Are we there yet? Dr. John Kappelman discusses Africa and the human evolutionary journey at HMNS

In the history of mankind, there have been three major migrations: two of these happened a long time ago, and one (of the “one small step for man, one giant leap for mankind” type) happened in our own lifetime. 

evolution astronautAbout 1.8 million years ago, hominids we call Homo erectus ventured outside Africa, wandering into Europe and Asia. Our own species evolved in East Africa around 200,000 years ago. About 50,000 years ago, Homo sapiens followed in Homo erectus’ footsteps, with significant numbers leaving Africa. Eventually they crossed Asia and made it all the way into the Americas.

Homo erectus model displayed at the Westfälisches Landesmuseum, Herne, Germany in 2007 (Image Wikimedia)

Homo erectus model displayed at the Westfälisches Landesmuseum, Herne, Germany in 2007 (Image from Wikimedia).

 On July 20, 1969, Homo sapiens marked another milestone, with the first step on the Moon. Today, we have a permanent presence in space, albeit it on a very limited scale. We have come a long way indeed.

Long before Homo erectus left Africa, other bipedal creatures roamed Africa. Among these was Australopithecus afarensis, a hominid first discovered in Ethiopia. In 1974, Donald Johanson and his team uncovered a well preserved specimen who was nicknamed Lucy, and shortly afterwards also Dinkenesh. 

AL 288-1, Australopithecus afarensis. Also known as “Lucy” or “Dinkenesh” (Image by Viktor Deak).

AL 288-1, Australopithecus afarensis. Also known as “Lucy” or “Dinkenesh”
(Image by Viktor Deak).

Lucy and her species have been the subject of many scientific studies. However, when she traveled to the United States for the second time in 2007 (the first time was in 1975, to the Cleveland Museum of Natural History), she underwent a scientific procedure never before applied to her: for 10 days, she resided on the campus of the University of Texas at Austin, where she underwent a high resolution CT scan.

The scanned data was handed over to the government of Ethiopia and Mamitu Yilma, director of the National Museum in Addis Ababa. The successful completion of Lucy’s scan meant that the specimen is now safely archived in digital format — one of the reasons behind the scanning.

A small but dedicated team participated in the scanning project in Austin: 

Members of the scanning team included (from left) Ron Harvey, conservator, Lincolnville, Maine; Alemu Admassu, curator, National Museum, Addis Ababa, Ethiopia;  John Kappelman, UT Austin; and Richard Ketcham, UT Austin.  The team used the ultra high-resolution Xradia MicroXCT scanner (background), for some of the scans.

Members of the scanning team included (from left) Ron Harvey, conservator, Lincolnville, Maine; Alemu Admassu, curator, National Museum, Addis Ababa, Ethiopia; John Kappelman, UT Austin; and Richard Ketcham, UT Austin. The team used the ultra high resolution Xradia MicroXCT scanner (background), for some of the scans.

Dr. John Kappelman has had a long-standing relation with the Houston Museum of Natural Science. He was one of many scientific advisors to the curator of anthropology when the exhibit featuring Lucy was prepared. His own research into human evolution is the topic of an upcoming presentation at the museum.

To find out if we are “there yet,” come listen to Dr. Kappelman on Tuesday, May 13 at 6:30 p.m.

HMNS Distinguished Lecture
The First Big Trip – Are We There Yet? Africa and the Human Journey
John Kappelman, Ph.D.
Tuesday, May 13, 2014, 6:30 p.m.
Click here to purchase advance tickets.

This lecture is cosponsored by Archaeology Institute of America – Houston Society as part of its 2013-2014 Innovations series.

The galaxy just got bigger: Calling all future space explorers to Family Space Day!

ATTENTION FUTURE SPACE EXPLORERS: NASA has just discovered 715 new planets for you to study and learn.

But let’s back up a second.

Launched in 2009, the Kepler space observatory has been scanning the heavens for earth-like exoplanets — planets existing outside our solar system. The observatory has been able to detect strong possibilities of planets, but they needed confirmation. Mountains of data have been sent to scientists on the ground to confirm the existence of these exoplanets.

While this process has been grueling and slow going, it resulted in several hundred confirmations. However, yesterday NASA announced the discovery of 715 new planets orbiting 305 stars — boosting the number of verified exoplanets by 70%.

Kepler has collected this data by detecting the transit of planets across their stars. When planets transit (i.e., cross in front of) a star, the star’s brightness appears to dim by a small amount. The amount of dimming depends on the size of the star and object revolving around it. This process can give false-positives, however, which has necessitated that the data be confirmed by scientists on the ground.

So what’s changed?

The way scientists were sifting through the data has changed. You see, it’s much easier to confirm the existence of planets when they are part of a multi-planet system. Readings that indicate multi-planet systems exist are difficult to explain as anything other than a multi-planet system — as opposed to single planet systems that could be explained by other phenomena. Therefore, by focusing on the data from what appeared to be multi-planet systems, scientists have been able to sift through and confirm the data at a much more rapid pace.

So what’s out there?

Ninety-four percent of the planets discovered are smaller than Neptune (that is, they’re four times larger than Earth or smaller). The number of planets with 2R (double the Earth’s radius) or less has increased 1,000 percent. Our total count of exoplanets now stands at 1,700 — which NASA planetary scientist Jack Lissaur has described as a “veritable bonanza of new worlds.”

So if you’ve got a future space explorer in your family, there’s never been a better time to get excited about space adventures — just in time for our Family Space Day at the George Observatory this Saturday.

Experience what it’s really like to be an astronaut-in-training with a simulated mission. Volunteers from NASA will guide you and your family on your mission — ensuring safe travels — as you transform into astronauts, scientists and engineers flying through space.

A perfect activity for the whole family, the flight simulation is open to adults and children 7 years and older (children ages 7 to 9 must be accompanied by a chaperone), and a minimum of 10 participants per mission is required.

Don’t miss this chance to participate in real astronaut training at the George Observatory! Click here or call (281) 242-3055 for details.

The X-Planets: Exploring the consequences of another Earth

When you look up at the night sky, do you ever think you’re seeing other solar systems? Do you ever wonder if any of the stars you see have planets like Earth in orbit around them?

We have discovered that seven planets and more than a hundred moons in our solar system are simply not enough like Earth to foster the development of life or to make colonization easy. We now realize that our search for an alien Earth must occur in solar systems around other stars.

As we approach a thousand confirmed exoplanets, we are becoming better at identifying Earth-like worlds. Sensitive measurements are required to detect the small wobble in a star caused by an orbiting planet or the drop in light caused by a planet crossing in front of a star.

Explore exoplanets at the Burke Baker PlanetariumNASA’s Kepler telescope, a planet-hunting mission, has uncovered 2,740 potential alien worlds since its 2009 launch. Of these, more than 350 are about the size of Earth. Observatories on Earth’s mountaintops are also identifying planets around other worlds and confirming the discoveries of Kepler.

Now we are working on detecting more than an exoplanet’s mass, diameter, and distance from its star by developing sensors that can identify gases in the planet’s atmosphere. This way, we can look for the oxygen and water vapor that support life on Earth.

It is just a matter of time before we find a world that is truly Earth’s twin. Studies suggest small planets like Earth are probably common in the universe — easily over 10 billion in our Milky Way Galaxy. Will the discovery of an alien Earth change the way we think about the universe and our place in it? Will we then realize that our planet is not unique, and that perhaps life on Earth is not unique either? Does this change how we think of our home planet and ourselves?

Visit the Planetarium’s new show, The X-Planets: Discovering Other Earths, to explore the first exoplanet discoveries and ponder these fundamental questions. For a full film schedule, click here.

A proactive approach to apocalyptic scenarios: Join us for a distinguished lecture Jan. 16 on finding near-earth objects — before they find us

Of all the natural disasters that could befall us, only an Earth impact by a large comet or asteroid has the potential to end civilization in a single blow. Yet these near-Earth objects also offer tantalizing clues to our solar system’s origins, and someday could even serve as stepping-stones for space exploration.

Dr. Donald Yeomans is coming to HMNS to explain the science of near-Earth objects — its history, applications, and the ongoing quest to find near-Earth objects before they find us.

Distinguished Lecture Jan. 16: Near Earth Objects: Finding Them Before They Find UsIn its course around the sun, the Earth passes through a veritable shooting gallery of millions of nearby comets and asteroids. One such asteroid is thought to have plunged into our planet 65 million years ago, triggering a global catastrophe that killed off the dinosaurs.

Yeomans provides an up-to-date and accessible guide for understanding the threats posed by near-Earth objects, and also explains how early collisions with them delivered the ingredients that made life on Earth possible. He shows how later impacts spurred evolution, allowing only the most adaptable species to thrive — in fact, we humans may owe our very existence to objects that struck our planet.

Yeomans will take us behind the scenes of today’s efforts to find, track, and study near-Earth objects. He will show how the same comets and asteroids most likely to collide with us could also be mined for precious natural resources like water and oxygen, and used as watering holes and fueling stations for expeditions to Mars and the outermost reaches of our solar system.

What: Distinguished Lecture, “Near Earth Objects: Finding Them Before They Find Us”
Who: Donald Yeomans, NASA Jet Propulsion Laboratory, California Institute of Technology
When: Wednesday, Jan. 16, 6:30 p.m.
Where: HMNS Main, 5555 Hermann Park Dr. 77030
How Much: $18 for the public; $12 for members

Dr. Donald Yeomans is a Senior Research Fellow with the Near-Earth Object Program Office at NASA Jet Propulsion Laboratory at California Institute of Technology. Following the lecture, he will sign copies of his new book Near Earth Objects: Finding Them Before They Find Us.

Click here for advance tickets.