Wonder Women of STEM: Dr. Mae Jemison, the first African-American female astronaut.

Editor’s Note: This post is the fourth in a series featuring influential women from STEM (Science, Technology, Engineering and Math) fields in the lead up to HMNS’ annual GEMS (Girls Exploring Math and Science) event, February 21, 2015. Click here to get involved!

 

We’ve seen some amazing women in STEM, but none are quite so out of this world as Dr. Mae Jemison, the first African-American female astronaut. In 1992, she orbited the earth for over a week on the space shuttle Endeavor and logged over 190 hours in space!

Dr. Jemison had numerous accomplishments in addition to her space travel. She began her college career at age 16 by attending Stanford University on scholarship. Within 4 years, she graduated with a BS in Chemical Engineering and a BA in African and African-American Studies from Stanford University. She continued her studies at Cornell University where she received her doctorate degree in medicine. A few years later, she proceeded to volunteer for over two years with the Peace Corps in Western Africa where she taught health education and contributed to research concerning the Hepatitis B vaccination among others.

After all of her volunteer work, Jemison applied to be part of the NASA Space Program and was one of 15 people selected out of 2000 to join the Space Program in 1987. She joined her first orbiting mission in 1992 with Endeavor. While aboard Endeavor, she worked with other astronauts on bone cell research along with other experiments and investigations. Although her time in space was short, she was able to claim the title of first female African-American in space. In May of 1993, Dr. Jemison left NASA to teach at Dartmouth College and continue to educate future generations.

In addition to her space travels, Dr. Jemison has a list of accomplishments that would knock your socks off. She can speak four languages, wrote her own book called “Find Where the Wind Goes,” was on the cover of JET Magazine, hosted the World of Wonders TV show, and was voted one of the 50 Most Beautiful People according to People Magazine. If that’s not enough, she’s also got a sense of humor. She talks about her experiences in Brazil for the 20th anniversary of the Apollo missions and she comments, “Wow!! Y’all need to be glad I didn’t go to Brazil before NASA or I’d still be there doing development work and the Samba on the beach.” Like I said, impressive!

Space was not the first major accomplishment for Dr. Mae Jemison, and it certainly won’t be her last. She continues to expand interest in science education through her foundation, The Dorothy Jemison Foundation for Excellence. She created The Earth We Share, international science camp for students as well as a program to encourage hands-on, science education through Teachers.

If you are inspired by women such as Dr. Mae Jemison, then you’ll enjoy meeting some of the local ladies of STEM at GEMS this weekend. Come to HMNS between 9 a.m. and 1 p.m. to learn more about science, technology, engineering and math! We’ll even have representatives from NASA!

Are we there yet? Dr. John Kappelman discusses Africa and the human evolutionary journey at HMNS

In the history of mankind, there have been three major migrations: two of these happened a long time ago, and one (of the “one small step for man, one giant leap for mankind” type) happened in our own lifetime. 

evolution astronautAbout 1.8 million years ago, hominids we call Homo erectus ventured outside Africa, wandering into Europe and Asia. Our own species evolved in East Africa around 200,000 years ago. About 50,000 years ago, Homo sapiens followed in Homo erectus’ footsteps, with significant numbers leaving Africa. Eventually they crossed Asia and made it all the way into the Americas.

Homo erectus model displayed at the Westfälisches Landesmuseum, Herne, Germany in 2007 (Image Wikimedia)

Homo erectus model displayed at the Westfälisches Landesmuseum, Herne, Germany in 2007 (Image from Wikimedia).

 On July 20, 1969, Homo sapiens marked another milestone, with the first step on the Moon. Today, we have a permanent presence in space, albeit it on a very limited scale. We have come a long way indeed.

Long before Homo erectus left Africa, other bipedal creatures roamed Africa. Among these was Australopithecus afarensis, a hominid first discovered in Ethiopia. In 1974, Donald Johanson and his team uncovered a well preserved specimen who was nicknamed Lucy, and shortly afterwards also Dinkenesh. 

AL 288-1, Australopithecus afarensis. Also known as “Lucy” or “Dinkenesh” (Image by Viktor Deak).

AL 288-1, Australopithecus afarensis. Also known as “Lucy” or “Dinkenesh”
(Image by Viktor Deak).

Lucy and her species have been the subject of many scientific studies. However, when she traveled to the United States for the second time in 2007 (the first time was in 1975, to the Cleveland Museum of Natural History), she underwent a scientific procedure never before applied to her: for 10 days, she resided on the campus of the University of Texas at Austin, where she underwent a high resolution CT scan.

The scanned data was handed over to the government of Ethiopia and Mamitu Yilma, director of the National Museum in Addis Ababa. The successful completion of Lucy’s scan meant that the specimen is now safely archived in digital format — one of the reasons behind the scanning.

A small but dedicated team participated in the scanning project in Austin: 

Members of the scanning team included (from left) Ron Harvey, conservator, Lincolnville, Maine; Alemu Admassu, curator, National Museum, Addis Ababa, Ethiopia;  John Kappelman, UT Austin; and Richard Ketcham, UT Austin.  The team used the ultra high-resolution Xradia MicroXCT scanner (background), for some of the scans.

Members of the scanning team included (from left) Ron Harvey, conservator, Lincolnville, Maine; Alemu Admassu, curator, National Museum, Addis Ababa, Ethiopia; John Kappelman, UT Austin; and Richard Ketcham, UT Austin. The team used the ultra high resolution Xradia MicroXCT scanner (background), for some of the scans.

Dr. John Kappelman has had a long-standing relation with the Houston Museum of Natural Science. He was one of many scientific advisors to the curator of anthropology when the exhibit featuring Lucy was prepared. His own research into human evolution is the topic of an upcoming presentation at the museum.

To find out if we are “there yet,” come listen to Dr. Kappelman on Tuesday, May 13 at 6:30 p.m.

HMNS Distinguished Lecture
The First Big Trip – Are We There Yet? Africa and the Human Journey
John Kappelman, Ph.D.
Tuesday, May 13, 2014, 6:30 p.m.
Click here to purchase advance tickets.

This lecture is cosponsored by Archaeology Institute of America – Houston Society as part of its 2013-2014 Innovations series.

The galaxy just got bigger: Calling all future space explorers to Family Space Day!

ATTENTION FUTURE SPACE EXPLORERS: NASA has just discovered 715 new planets for you to study and learn.

But let’s back up a second.

Launched in 2009, the Kepler space observatory has been scanning the heavens for earth-like exoplanets — planets existing outside our solar system. The observatory has been able to detect strong possibilities of planets, but they needed confirmation. Mountains of data have been sent to scientists on the ground to confirm the existence of these exoplanets.

While this process has been grueling and slow going, it resulted in several hundred confirmations. However, yesterday NASA announced the discovery of 715 new planets orbiting 305 stars — boosting the number of verified exoplanets by 70%.

Kepler has collected this data by detecting the transit of planets across their stars. When planets transit (i.e., cross in front of) a star, the star’s brightness appears to dim by a small amount. The amount of dimming depends on the size of the star and object revolving around it. This process can give false-positives, however, which has necessitated that the data be confirmed by scientists on the ground.

So what’s changed?

The way scientists were sifting through the data has changed. You see, it’s much easier to confirm the existence of planets when they are part of a multi-planet system. Readings that indicate multi-planet systems exist are difficult to explain as anything other than a multi-planet system — as opposed to single planet systems that could be explained by other phenomena. Therefore, by focusing on the data from what appeared to be multi-planet systems, scientists have been able to sift through and confirm the data at a much more rapid pace.

So what’s out there?

Ninety-four percent of the planets discovered are smaller than Neptune (that is, they’re four times larger than Earth or smaller). The number of planets with 2R (double the Earth’s radius) or less has increased 1,000 percent. Our total count of exoplanets now stands at 1,700 — which NASA planetary scientist Jack Lissaur has described as a “veritable bonanza of new worlds.”

So if you’ve got a future space explorer in your family, there’s never been a better time to get excited about space adventures — just in time for our Family Space Day at the George Observatory this Saturday.

Experience what it’s really like to be an astronaut-in-training with a simulated mission. Volunteers from NASA will guide you and your family on your mission — ensuring safe travels — as you transform into astronauts, scientists and engineers flying through space.

A perfect activity for the whole family, the flight simulation is open to adults and children 7 years and older (children ages 7 to 9 must be accompanied by a chaperone), and a minimum of 10 participants per mission is required.

Don’t miss this chance to participate in real astronaut training at the George Observatory! Click here or call (281) 242-3055 for details.

The X-Planets: Exploring the consequences of another Earth

When you look up at the night sky, do you ever think you’re seeing other solar systems? Do you ever wonder if any of the stars you see have planets like Earth in orbit around them?

We have discovered that seven planets and more than a hundred moons in our solar system are simply not enough like Earth to foster the development of life or to make colonization easy. We now realize that our search for an alien Earth must occur in solar systems around other stars.

As we approach a thousand confirmed exoplanets, we are becoming better at identifying Earth-like worlds. Sensitive measurements are required to detect the small wobble in a star caused by an orbiting planet or the drop in light caused by a planet crossing in front of a star.

Explore exoplanets at the Burke Baker PlanetariumNASA’s Kepler telescope, a planet-hunting mission, has uncovered 2,740 potential alien worlds since its 2009 launch. Of these, more than 350 are about the size of Earth. Observatories on Earth’s mountaintops are also identifying planets around other worlds and confirming the discoveries of Kepler.

Now we are working on detecting more than an exoplanet’s mass, diameter, and distance from its star by developing sensors that can identify gases in the planet’s atmosphere. This way, we can look for the oxygen and water vapor that support life on Earth.

It is just a matter of time before we find a world that is truly Earth’s twin. Studies suggest small planets like Earth are probably common in the universe — easily over 10 billion in our Milky Way Galaxy. Will the discovery of an alien Earth change the way we think about the universe and our place in it? Will we then realize that our planet is not unique, and that perhaps life on Earth is not unique either? Does this change how we think of our home planet and ourselves?

Visit the Planetarium’s new show, The X-Planets: Discovering Other Earths, to explore the first exoplanet discoveries and ponder these fundamental questions. For a full film schedule, click here.