Seeing Stars with James Wooten: Last Chance for Winter Constellations in April

Starmap April

Jupiter is now high in the east-southeast at dusk. It outshines all stars we ever see at night, so you can’t miss it. 

Mercury is visible just after sunset this month. Face west at twilight, and look low in the sky over the point where the sun sets. Mercury isn’t as brilliant as Venus or Jupiter, but it easily outshines the stars near it in the sky, so it’s not too hard to find. 

Mars is in the south-southwest at dawn. Noticeably reddish in tint, Mars continues to brighten each day until its opposition in May. It has now surpassed nearby Saturn in brightness.

Saturn is in the south-southwest at dawn, above the distinctive pattern of Scorpius, the scorpion. Mars remains close to Saturn this month.

Venus is becoming lost in the sun’s glare. Already, it doesn’t rise until deep into morning twilight, and Venus continues to approach the sun all month.

April is the last month to see the set of brilliant winter stars which now fill the western evening sky. Dazzling Orion is in the southwest at dusk. His three-starred belt is halfway between reddish Betelgeuse and bluish Rigel. Orion’s belt points rightward to Aldebaran in Taurus the Bull. To Orion’s upper left are the twin stars Castor and Pollux, marking the heads of Gemini, the Twins. You can find Sirius, the brightest star we ever see at night, by drawing a line from Orion’s belt towards the left. Forming a triangle with Sirius and Betelgeuse is Procyon, the Little Dog Star. 

Joining the winter stars are stars of spring rising in the east. Look for Leo, the Lion at dusk. Ursa Major, the Great Bear, which includes the Big Dipper, is high above the North Star on spring evenings. Extend the Big Dipper’s handle to ‘Arc to Arcturus’ and then ‘speed on to Spica’. There are fewer bright stars in this direction because of where the plane of our galaxy is in the sky. The area of sky between Gemini and Taurus and over Orion’s head is the galactic anticenter, which means that we face directly away from the galactic center when we look in this direction. Those bright winter stars setting in the west are the stars in our galactic arm, right behind the sun. On the other hand, if you look at the sky between Ursa Major, Leo, Virgo, and Bootes, you’re looking straight up out of the galactic plane, towards the galactic pole. There are fewer stars in this direction.

Moon Phases

Moon Phases in April 2016:

New: April 7, 6:24 a.m.

First Quarter: April 13, 10:59 p.m.

Full: April 22, 12:24 a.m.

Last Quarter: April 29 10:29 p.m.

On most clear Saturday nights at the George Observatory, you can hear me do live star tours on the observation deck with a green laser pointer. If you’re there, listen for my announcement. 

Clear Skies!

Now Open: The Burke Baker Planetarium, Best in the World

It only takes a few seconds of a stellar light show in this newly-renovated facility to recognize why the Houston Museum of Natural Science is calling the Burke Baker Planetarium “the best and brightest in the world.” The clarity, the detail, the movement, the science, the imagery, all come together to create one of the most spectacular visions of the night sky you’ve ever seen, inside or outside the city. Part teaching tool, part adventure, a show at the planetarium is nothing short of magic.

IMG_6639

A seat in the Burke Baker Planetarium is like a seat on the edge of space.

The power of the visual feast is due to the combined renovations of the theater and the projection system. With the specialized dome in place, the Digistar 5 laser projection system now has a surface on which to display its full potential. Ten Sony projectors that shoot across the dome at different angles combine to create one giant 360-degree image with more than 50 million unique pixels, or twice the size of the largest movie theaters. Laser projection means bright, vibrant color, and a frame rate of 60 frames per second means this system displays close to what the eye sees in reality looking up at the night sky. The only thing is that this picture is clearer.

IMG_6627

This projection might as well be a photograph of deep space from the Hubble Telescope!

Take a look at some of the shots of the theater we took during today’s grand opening demonstration for a sneak peek, but don’t hesitate to come out and see for yourself. It’s the closest you can come to flying in space without actually suiting up!

IMG_6624

That’s not hyperspace; that’s the dome theater!

IMG_6640

See the constellations like the Greeks imagined them!

IMG_6644

NASA Astronaut Mario Runco introduced the Burke Baker Planetarium during our grand opening event Friday. Runco did physics research on the International Space Station using toys in space. Only the Burke Baker Planetarium has views of space like Runco has seen.

Rome wasn’t built in a day, and neither was the renovated Friedkin Theater. Take a look at this time-lapse video that shows how much work we put into installing the dome!

The Dome is Done! Planetarium renovation moving ahead right on schedule

The Burke Baker Planetarium and Friedkin Theater renovation project reached a milestone this week, and we at the museum are brimming with anticipation!

Okay. That’s an understatement. When we first heard the news, we all ran around screaming, “The dome is finished! The dome is finished!” That’s what really happened.

The dome is indeed complete, and it was no basic DIY endeavor. The Houston Museum of Natural Science’s Astronomy department budgeted an hour for the installation of each of the 197 panels installed. The old screen was removed and replaced first with support structures and next with the new screen, piece by piece, snugly tucked into place.

Dome Complete

In a 360-degree shot, the new domed screen over the Friedkin Theater in the Burke Baker Planetarium looks like a giant cue-ball.

It’s a painstaking process, according to Planetarium Producer Adam Barnes, the man behind our 360-degree custom-made films. He’s working on a time-lapse photo record of the installation that should be available on social media in the next couple of weeks. Once the old screen was gutted and recycled, Barnes explained, project crews shot 16 anchor bolts into the primary structure of the dome, then got to work on its “rib cage,” the support structure that holds the curved screen. The lowest-hanging portion was built first, then raised into place using come-alongs and chained to the anchor bolts at about 20 degrees. The front of the support structure is about two feet off of the ground at the front of the theater and about 20 feet in the back, giving the new dome its aesthetically pleasing tilt. Once the bottom rung was installed, the crew worked in a upward to the center of the dome, installing one rung at a time until the last circular piece was set in place at the top.

PlanetSupport

With the old screen recycled, the next step is unpacking the scaffolding!

“If you imagine a globe, and the lines of latitude and longitude it’s divided into, that’s what the support structure looks like,” Barnes said. “Each little square gets smaller and smaller and more curved until you get to the center, which is a circle.”

With the bones of the theater set, each white panel was raised and placed, carefully measured and marked for size, then taken back down for shaping. The panels ship separately, pre-painted to a specific color rated to 45 percent reflectivity, perforated to make installing the rivets easier, and oversized for the tightest fit possible. Once each panel was measured, it was clamped onto a curved workbench and whittled down into the perfect shape, then re-hung into its final position.

334A2471_med

One by one, the panels are installed with careful measuring and alignment.

“Then they go on to the next panel,” Barnes said. “Each rivet is placed into one of the perforations, so you can’t see how it’s mounted. It’s flush, and they put a little bit of paint over the tiny metal rivet so it blends in very nicely.”

One by one, the panels were installed around and all the way to the top of the dome in much the same fashion as the supports underneath them. The result is a smooth, seamless screen specially designed for domed projections. While most flat-screen theaters have a reflectivity of between 60 and 70 percent (a mirror would reflect 100 percent of light projected onto it), the dome theater’s lower rating actually allows the image to become sharper, though it may not bounce as much light back into the eyes of viewers.

Planet1

“For a dome, you’re shining projectors in front of you but also behind you,” Barnes said. “It’s like looking at an image on a nice, big TV projector screen in front of you and then opening the windows behind you so you can’t see the screen anymore. We call it cross-talk, when the light bouncing off the screen behind you ends up washing out the image in front of you.”

The interference of cross-talk is simply eliminated with a less-reflective screen, maximizing the power of each of the 50 million unique pixels pouring from the Evans & Sutherland Digistar 5 laser projection system. And with the tilt of the dome, guests receive a theater-like experience we’re sure they’ve never seen before.

Planet2

Mark on your calendars the grand opening of the newly renovated Burke Baker Planetarium and Friedkin Theater March 11. Don’t miss the show! Be the first to see the brightest planetarium in the world in action!

Author’s note: All photos by Adam Barnes.

Seeing Stars with James Wooten: Four Planets are Visible

jan star report

Venus is in the southeast at dawn, approaching Saturn. Venus passes Saturn the morning of January 9; the two planets are less than one tenth of one degree apart! They’re easy to tell apart, as Venus outshines all the stars we see at night and is almost 100 times brighter than Saturn.

Mars is now in the south at dawn. Much dimmer than Venus now, Mars is getting a little brighter each day until its opposition next spring.

Jupiter now dominates the southwestern sky at dawn. As Jupiter approaches its opposition on march 8, you can also begin looking for it in late evening. By January 31, for example, Jupiter rises by 9:00 and will have cleared most horizon obstacles by 9:30 or 10.

In January, the Big Dipper is only partly risen at dusk. As the Big Dipper rises, though, Cassiopeia remains high. This is a pattern of five stars in a distinct W (or M) shape which lies directly across the North Star from the Big Dipper. Look for Cassiopeia high in the north on fall and winter evenings.

Watch for the Great Square of Pegasus in the west at dusk. Taurus, the Bull is high in the south. Look for the Pleiades star cluster above reddish Aldebaran. Dazzling Orion, the Hunter takes center stage on winter evenings. Surrounding Orion are the brilliant stars of winter. Orion’s belt points down to Sirius, the Dog Star, which outshines all other stars we ever see at night. The Little Dog Star, Procyon, rises with Sirius and is level with Orion’s shoulder as they swing towards the south. To the upper left of Orion’s shoulder is Gemini, the Twins.

Moon Phases
Moon Phases in January 2016:

Last Quarter Jan. 1, 11:30 p.m.; Jan. 31, 9:28 p.m.

New Jan. 9, 7:31 p.m.

1st Quarter Jan. 16, 5:26 p.m.

Full Jan. 23, 7:46 am

At 4:49 pm on Saturday, January 2, the Earth was as close to the Sun as it will get this year. Thus we say that the Earth was at perihelion. However, Earth was only about 1.6% closer to the Sun than average on this date. That’s why being closer to the Sun at this time does little to warm us up. The effect of Earth’s tilt on its axis dominates the small effect of Earth’s varying distance in causing the seasons.

Although the shortest day (least daylight) occurs on December 21, the latest sunrise occurs for us about January 10. That’s because the Earth speeds up on its orbit as it approaches perihelion. This acceleration shifts sunrise, local noon, and sunset slightly later each day for the first part of this month. The effect is smaller than that of the Sun taking a slightly higher path across the sky, which normally dominates in causing later sunsets and earlier sunrises. But the Sun’s apparent path varies very little near the solstice itself, allowing the secondary effect of the Earth approaching the Sun to predominate until mid-January. Most people, then, will notice that both sunrise and sunset are now happening earlier than in December. As we move farther from the solstice, the effect of the Sun taking a slightly higher path each day again predominates.

On most clear Saturday nights at the George Observatory, you can hear me do live star tours on the observation deck with a green laser pointer. If you’re there, listen for my announcement.

Clear Skies!