The Unconquered Sun: Winter Solstice Today!

At 11:47 am Central Time on Monday, December 21, the sun is overhead at the Tropic of Capricorn. This is the farthest point south at which the sun can be overhead, indicating that the North Pole is tilted as far away from the sun as possible. At the Tropic of Capricorn and elsewhere in the Southern Hemisphere, the high sun results in the longest day of the year and the beginning of summer.  Up here in the Northern Hemisphere, however, the sun is as low as possible in the sky, and we have our shortest day of the year.  This is the winter solstice for us.

Ancient peoples across America, Europe and Asia noticed that the sun got lower and lower and the daylight shorter and shorter throughout autumn.  When the sun reached its lowest point, this meant that it had stopped going away and would return–a cause for celebration.  One of the many pagan winter solstice festivals was Yule, celebrated in northern Europe.  Another was the festival of Sol Invictus (the Unconquered Sun) celebrated in Rome on Dec. 25.  Keep in mind that in antiquity the 25 was the date of the solstice itself–the sun which had stopped going away and begun to return was ‘unconquered.’  Due to the imprecision of the Julian calendar, the solstice had shifted to Dec. 21 by the year 325 A.D., when the Nicene Council convened. Since Pope Gregory’s reform was calculated to restore the equinoxes and solstices as of the Nicene Council, the winter solstice is now on Dec. 21 (occasionally Dec. 22).

No one in antiquity knew what date Jesus was born.  For one thing, many of the early Christians rejected all birthday celebrations of any kind as a pagan ritual.  Even had folks wanted to observe Jesus’ birth, the lunar calendar used in Israel at the time would complicate the choice of date.  The Chronology of 354 is the oldest document to list Christmas as a festival.  When the church selected Dec. 25 for this festival, it was probably because late December was already a festive time across the Roman Empire.

Sunset over Chicago
Creative Commons License photo credit: kevindooley

Although today is the shortest day of the year, you may have already noticed that sunset is a few minutes later now than at the beginning of the month.  In June, the North Pole was tilted towards the sun as much as possible.  Since then, the North Pole has tilted a little more away from the sun each day.  Days have been getting shorter because each day the sun has taken a slightly lower path across the sky.  Sunrises have been getting earlier and sunsets have been getting later.  By late November the sun had already gotten about as low as it is now.  As the day to day difference in the sun’s height gets smaller, another effect begins to dominate.

Earth’s orbit is not a circle; it is an ellipse.  The orbit is almost a circle, however; the eccentricity (out-of-roundness) is just 0.016, where 0 is a perfect circle and 1 a parabola.  This is enough of a difference to bring Earth slightly closer to the sun in early January and take it slightly farther away in early July.  Therefore, Earth is now beginning to make its closest approach to the sun (called perihelion).  As a result, Earth is speeding up on its orbit.  This causes sunrise, local noon, and sunset to occur just a little later each day.  By the 21, sunset will occur at 5:27 pm, as opposed to 5:22 pm on Dec. 2 (the actual date of the earliest sunset).  Sunrise, however, will have shifted from 7:00 am to 7:13 am.  Thus, that days are still getting shorter even though the sunsets are a little later.

Many people assume that the winter solstice should be the coldest day, but this is usually not true. January is usually colder.  Although days get a little bit longer and the sun a little bit higher beginning Monday, it takes quite awhile for this to add up to an appreciable difference in the Sun’s height in the sky and in the amount of light and heat reaching the arctic.  Frigid air masses continue to form in the arctic and move across the Northern Hemisphere throughout January, February, and often March.  Although the sun is higher in those months than in December, the air can be just as cold if not colder.

Equinox 2

Hopefully, we are getting all of our cloudy, gloomy weather over with , and the solstice will be sunnier. If so, you can join us on the museum sundial at noon on Monday, Dec. 21 to observe the sun!  This is one of the Fun Hundred events celebrating our 100 anniversary here at the Museum.   On top of the gnomon on our sundial is a silver ball with three sets of holes, which allows the sun to shine through pairs of lenses near each solstice or equinox.  To account for cloudy weather, our gnomon’s holes are big enough that the sun aligns with them for a few days before and after the exact equinox or solstice date.  The holes aligned with the winter solstice are so big that you can still project the sun’s image through them deep into January!  If the weather does not cooperate Monday, you can come and observe the sun on our sundial near noon on any day in the next few weeks.

Great Caesar’s Ghost!

Creative Commons License photo credit: glacial23

Why is this month called July? The short answer is that July is named for Julius Caesar. The longer answer involves the ancient Romans’ attempt to keep track of the year.

There are two bright lights in the sky which can help us mark the passage of a year: the Sun and the Moon. Since the year is defined by the Earth’s motion around the Sun, it is best to measure it using the Sun’s apparent changing position among the stars. However, this observation is difficult, since we do not see the Sun and the background stars at the same time. The first ancient culture to do this was ancient Egypt, where the rising of Sirius just before the Sun occurred right before the annual flood of the Nile. Egyptians marked the beginning of each new year with this event.

Sirius vanishes for several months each year when Earth’s orbital motion puts the swath of sky containing Sirius on the far side of the Sun, and therefore behind the Sun from our point of view. Eventually, Earth’s continued motion brings that swath of sky from behind the Sun, allowing Sirius to rise just before dawn. To measure years by the reappearance of Sirius, then, is to measure them by the positions of the Earth and the Sun–a solar calendar.

Creative Commons License photo credit: ComputerHotline

The Moon, by contrast, is much easier to observe each clear night. Most ancient cultures, including the ancient Romans, measured months by tracking the cycle of lunar phases from new to full and back to new. Since a lunar phase cycle takes 29.5 days on average, we might expect the month lengths to alternate between 30 and 29 days. However, the Romans considered even numbers unfortunate, so their months, beginning with March, had the following lengths:

Martius 31, Aprilis 29, Maius 31, Junius 29, Quintilis 31, Sextilis 29, September 29, October 31, November 29, December 29, Januarius 29, Februarius 28

Yes, January and February were tacked on to the end of the year at first (the Romans originally did not count days at all between December and March) and later moved to the beginning. (In 153 BC, Roman consuls began to take office as of January 1, making that the start of the civil year). February was given an even number of days (making it unfortunate) so that the year as a whole would be fortunate, with an odd number of days.

Unfortunately, there is not an even number of lunar phase cycles per solar year. A cycle of 12 lunar months is 354 days long, 11 days shorter than the cycle of seasons which is about 365.25 days long. (The Roman calendar outlined above has 355 days, because the Romans preferred odd numbers). If this is not corrected, each month occurs 11 days earlier each year, compared to the start of the seasons, and months are no longer associated with the seasons. This is exactly what happens in the Muslim calendar. To keep months roughly aligned with the seasons, an extra 13th lunar month must be added to some years, as in the Hebrew calendar. Thus, the Romans periodically added an extra month, called Intercalaris, between February and March. After all, February was originally at the end of the year.

Martes 13
But is it really? Ordinary Romans didn’t
Creative Commons License photo credit: kozumel

However, it was up to the Roman priests to decide which years would have the extra month. Priests often used this power to arbitrarily shorten the terms of political opponents and lengthen the terms of their friends. Also, the extra month was considered unlucky and avoided in times of crisis, such as the Second Punic War against Carthage. By Caesar’s time the calendar had become so chaotic that regular Roman citizens, especially those far from Rome, did not know the date.

Even as he waged civil war against his rivals for power in Rome, Caesar began many popular reforms as dictator. He offered citizenship to many more Romans and enlarged the Senate to provide more representation. He canceled one fourth of all debts. And he reformed the calendar so even the average Roman could know the date.

While in Egypt, he consulted the Greek astronomer Sosigenes, who told him of the Egyptian solar year of 365 days. Caesar thus decided to add ten days to the 355 day Roman calendar. First, in 46 BC, he realigned the months with their traditional seasons by using Intercalaris and by adding two more months between November and December. 46 BC thus became a 445-day year, the ‘last year of confusion.’ Beginning in 45 BC, the new 365 day Julian Calendar was to come into effect. Caesar added 2 days each to January, ‘Sextilis’, and December, and one day each to April, June, September, and November. The original long months (March, May, Quintilis, and October) remained 31 days long. February, the ‘unlucky’ month devoted to religious rituals, also remained unchanged.

The extra month Intercalaris was dropped forever, replaced by an extra leap day every four years. As Romans had added the extra month in late February, Ceasar placed leap day there as well. The year took its modern shape starting in 45 BC:

January 31, February 28 (29), March 31, April 30, May 31, June 30, Quintilis 31, Sextilis 31, September 30, October 31, November 30, December 31

Julius Caesar
Creative Commons License photo credit:
get directly down

On the Ides of March (March 15), 44 BC, Julius Caesar was assassinated. The Roman Senate felt that a fitting tribute, given Caesar’s work with the calendar, would be to name a month of the year after him. Caesar had been born on the 4th day to the Ides of Quintilis (Quintilis 12th). When that month came around in 44 BC, the Senate proclaimed that from that year on, Quintilis shall be known as Julius (or July in English).

Romans at first counted inclusively, i.e. 1, 2, 3, 4/1, 2, 3, 4/1, 2, 3…. This led them to use leap years too often. The first Roman emperor, Caesar Augustus, noticed this and suppressed all leap years between 9 BC and AD 8. In recognition of this, the Senate offered Augustus a month, and he chose Sextilis, the month when his greatest victories had occurred. Thus Sextilis became August.

As it turns out, the year is not exactly 365.25 days long; its closer to 365.2422 days. The Julian year is thus 11.8 minutes too long on average. There is some evidence that Caesar, Sosigenes et al. knew of the error but considered it insignificant. However, those 11.8 minutes add up to 1 day about every 130 years. In 1582, Pope Gregory XIII noticed that the year had gotten off by 10 days since AD 325, when the Nicene council set the rule for calculating the date of Easter. The Pope decreed that October 15 would follow October 4, 1582, and that century years are leap years only if they are divisible by 400 (thus 2000 was a leap year, but 2100, 2200, and 2300 will not be). Our current calendar, then, is the Gregorian calendar, not the Julian.

But consider this: Pope Gregory did not change the length of the year, nor the lengths of the months, nor the fact the the leap day is in February. All of these decisions by Julius Caesar remain in effect. Caesar, then, still deserves his place of honor in the year.

Love astronomy? Check these out:
What can you see in the sky during Julius’ month?
Stars led the slaves North on the Underground Railroad.
Check out the biggest diamond in the Universe – it’s 10 billion trillion trillion carats.