Science & The Simpsons, Part I: What’s a fossil fuel anyway?

When The Simpsons started in the late 1980s, very few people would’ve believed that the show could last as long as it has. Like the show or not, you can’t deny how it’s changed the way TV shows look at controversial material and incorporate current events and topics into their plots.

For instance, take Episode 450, “Married to the Blob,” which aired this past January. While the main story line deals with Comic Book Guy’s search for love, in quasi Much Ado About Nothing fashion, the first few minutes of the episode regale us with yet another adventure from the show’s favorite superhero, Radioactive Man.

And therein lies the show’s genius — what seems to be a short aside (an introduction at best) is actually an acute commentary on energy literacy: reflecting some of the struggles the industry faces as we seek to maintain energy independence, all while steadfastly moving into the future of energy production.

The show personifies all major aspects for retrieving and releasing energy. Nuclear energy (fission) is represented by Radioactive Man, and his sidekicks Solar Citizen and Wind Lad represent solar and wind power respectively. In this episode, they face their nemeses, a rough group of villains who call themselves The Fossil Fuel Four. They’re made up of King Coal, Petroleumsaurus Rex, Charcoal Briquette, and the Fracker (the names are likewise pretty opaque, with the characters representing coal, petroleum, charcoal, and the technique of fracking). Through their battle, we see the struggle between sustainable resources and fossil fuels.

It would be difficult to overstate the importance fossil fuels have had in creating the modern industrial world. The Industrial Revolution would’ve never occurred without ready access to coal, and the industrialized world still depends on it to a great extent. Fossil fuels have provided a ready source of energy for centuries now because they are easily burned to release their stored energy. When these fuels burn, they oxidize releasing carbon dioxide and water and produce large amounts of energy relative to their weight. These fuels can be found in solid, liquid and gaseous states (like coal, oil, and natural gas).

As these resources have become more scarce, new techniques have been developed to extract them from the earth, such as fracking (technically called hydraulic fracturing, which uses controlled explosions to break up the bedrock where these fuels are held) and surface mining (which removes vast amounts of surface rock to gain access to minerals).

Part of the reason why these new techniques have come into use is that fossil fuels are not easily or readily replenished. They are — quite literally — fossils, and therefore take a long time to form. (The word fossil simply means “evidence of past life.”) Over millions of years, tiny plants and other organisms would settle on the floor of a body of water (ocean, lake, etc.). Other sediment would settle over them, causing them to decompose in anoxic (read: with depleted oxygen) environments. After hundreds of millions of years of exposure to heat and pressure from added sediment, the organic matter is chemically altered. Depending on the type of organic matter, the amount of time and pressure applied, you get different types of fossil fuels.

It’s the depletion of fossil fuels and the negative consequences from them (such as poor air quality, which can lead to smog and acid rain, and the massive amounts of carbon dioxide released into the atmosphere, which has caused drastic changes in climate) that has led to our current quest for sustainable energy sources.

Editor’s note (Please read the following bold text in a cheesy, comic-announcer-type voice): Will climate change continue unabated? What will happen to Radioactive Man now as he battles The Fossil Fuel Four? Will he defeat his foes — or is it too late? 

Tune in next time as we catch up with our superhero.

Add it up: Doing the math on electric cars

Editor’s note: The opinions expressed by our contributing staff writers are their own and do not necessarily represent the opinions of the Houston Museum of Natural Science.

Electric cars are a popular idea. You see them in movies, hear about them in songs, and especially get to know them via inventive commercials. They claim that they produce no pollution, unlike their dinosaur automobiles with the internal combustion engines. But are they as green as they claim to be? (Note: For this blog I’ll be talking about pure electric cars, not hybrids.)

Doing the math on electric cars

A normal gasoline-using car produces pollutants as a result of converting fuel into movement. An electric car uses stored electricity to propel the vehicle. But how much pollution was created while creating the electricity? To compare the two, we’ll have to find some way to make gasoline and electricity equivalent. Fortunately, we can convert both to one unit: joules. While you might want to wear a jewel, a joule will help you get work done. A joule (abbreviated by “J” ) is a unit of energy. It’s the equivalent of applying 1 ampere through a resistance of 1 ohm for 1 second, or the force of 1 Newton over 1 meter.

A gallon of gasoline contains about 1,300,000,000 joules. One kilowatt of electricity contains 36,000,000 joules. So 1 gallon of gas produces about 36 kilowatt hours.

Burning a gallon of gasoline to move your car produces about 20 pounds of carbon dioxide. One kilowatt hour can produce different amounts of carbon dioxide, depending on what energy source was used to make it. In the United States, much of our electricity (about 42 percent) comes from coal-fired power plants. One kilogram of coal can produce 2 kilowatt hours and 2.93 kilograms of carbon dioxide. That’s about 3.3 pounds of carbon dioxide per kilowatt hour, which means that 1 gallon of gas’ equivalent in electricity produces 118 pounds of carbon dioxide if all the electricity is made from coal-fired power plants. From this information, it seems that the internal combustion engine outperforms the electric, but not all electricity comes from coal.

While the majority of our electrical generation comes from coal-fired power plants, there are other energy sources. Thirteen percent of our electricity comes from renewables such as wind and solar power, which produce no carbon dioxide. Nuclear power gives us 19 percent of our electricity and produces no carbon dioxide, either. Using this division of power sources, the amount of carbon dioxide produced making electricity for an electric car has been reduced from 118 pounds to just 8. But what about natural gas?

Natural Gas is measured by the MMBTu (one million British thermal units), which is about 1,000 cubic feet (1 mcf). One mcf of natural gas produces 122 pounds of carbon dioxide and can produce about 29 kilowatt hours. Are you still with me? This means that natural gas produces about 4 pounds of carbon dioxide per kilowatt hour. So when we add that back into the mix, our electric car is producing about 9 pounds of carbon dioxide per kilowatt hour. A gallon of gas is about 36 kilowatt hours and produces 20 lbs of carbon dioxide, or about half a pound of carbon dioxide per kilowatt hour.

Does that mean that electric cars produce more carbon dioxide than ones that run on gas? Maybe, maybe not. All those numbers are based on the national average of the energy mix. If renewables provide more electricity in your area, the amount of carbon will decrease. If you get your electricity from an all-renewable company, then you’re producing no carbon. Also, this blog has only addressed the amount of carbon dioxide produced directly by energy sources. It has not included all the other pollutants produced. It has not included the entire life cycle of the energy source. For example, a nuclear reactor produces no carbon dioxide, but mining uranium is a very energy intense project. Wind turbines produce no carbon dioxide while creating electricity, but carbon dioxide is produced when they are built.

The amount of carbon dioxide produced by electric cars can be brought down easily, where the amount produced by internal combustion engines can not. yo could switch the source of electricity. You could take stored electricity and use it for you car. Because our grid is a stupid grid and not a smart grid electricity is put on the grid as needed. If there is a moment with high wind generation and a high need for electricity, then the amount of carbon produced decreases. If the wind stops blowing and the need is still there, then the more traditional sources kick in and the amount of carbon produced goes right back up.

So while an electric car, on average, may currently produce more carbon dioxide than a gas-powered car, depending or your location and your electric provider, your electric car may be producing no carbon dioxide. Also, while there is little hope to improve the internal combustion engine to eliminate the production of carbon dioxide, researchers hope to eventually eliminate the carbon produced by an electric car. So “Let’s take a ride in an electric car/To the west side in an electric car/How can you deny an electric car/Won’t you take a ride with me/Come on and take a ride with me!”

Science Doesn’t Sleep (4.17.08)

 

Creative Commons License photo credit: antjeverena

So here’s what went down since you logged off.

You can stop building your asteroid impact shelter - that German kid got it wrong. NASA stands by their estimate of the asteroid Apophis’ chance of colliding with Earth, also denying they ever admitted an error. 1 in 450, 1 in 45,000 – it still seems like “way too likely” to me.

Robot alert! The Carnegi Science Center (those crazy kids that brought us the Robot Hall of Fame) is developing an exhibit called Roboworld, that will “will emphasize three aspects of artificial robotic behavior: sensing, thinking and acting.” Sadly, “taking over the world” is not on the list of behaviors to be featured.

We love nature – but it doesn’t love us back. Humans are more harmful to coral reef than the fallout from an atomic bomb.

Houston, we just keep stacking up the honors. In addition to being named the country’s fattest city, it turns out that Harris County is number one for something else – carbon dioxide emissions.

Are you planning anything for Earth Day? You can check out what people around the world are doing, get some suggestions from Google or, oddly enough, the government.