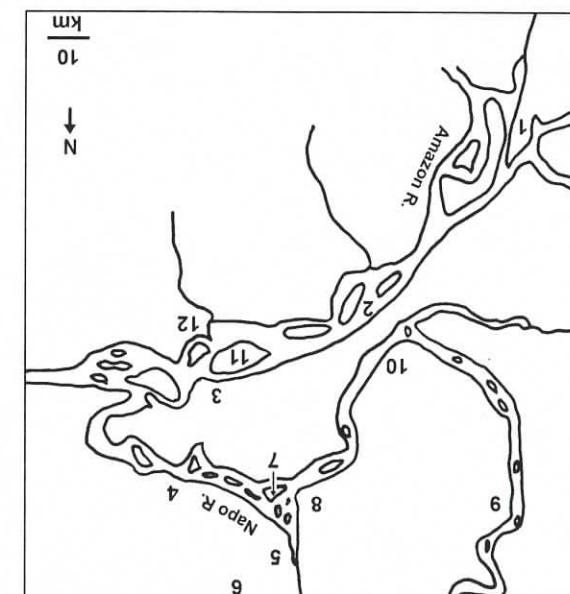


The family *Cotymidae* contains 25 genera and approximately 66 species (Strotz *et al.* 1996). Current address: Credit Specialist Group Headquarter, PO Box 13238, Houston, Texas 77006, USA. E-mail: fcroottpix@aol.com

INTRODUCTION

Keywords: *Cottingas, comparative sociobiology, Amazonian birds, resource distribution.*

Instead, we investigated sociobiology of sympatric congeners by comparing variation of common characters. The species studied (smallest to largest) are: *Lophopetalum purpureum*, *Crinodendron fimbriatum*, *C. camporum*, *Lophopetalum wrightii*, *Phytolacca heterotropa*, *Quinchamalium chilense*, *Psychotria lutea*, *Psychotria carthagenensis*, and *Psychotria carthagenensis*. For mass and total length, smaller species are characterized by females being longer than males, whereas females are smaller in the larger species. Although not significantly with spe- cies use higher parts of habitat structure than food resource defense intra- and interspecifically. Smaller increases with size, and most species exhibit low food resource defense intra- and interspecifically. Smaller medium species and/or monogamous courtship strategy. 1) Solitary, dieltonomic males of smaller species are solitary, whereas larger species tend to travel in small flocks. Regarding courtship, smaller species are solitary, whereas larger species use lower parts. Most of the from. Although a lack of model) as they relate to courtship strategy. 1) Solitary, dieltonomic males of smaller medium species are characterized by solitary male systems (including polygamy), with little kicking in the medium species are characterized by solitary male systems (including polygamy). 2) Aggressively expanding territories (territoriality), the males compete through courtship such as lek- king and/or vocalizing to live in females (benefit = decreased predation risk below the canopy, cost = increased energy expenditure during courtship); 3) Males of larger species are forced to their courting sites by females that are attracted to the habitat containing the preferred resource; males typically court a single female using subde ornamentation, as well as calling in some species. Accepted 24 June 1999.


Department of Wildlife and Fisheries Sciences, Texas A&M University,
College Station, Texas 77843, USA.
Explorama, Box 446, Iquitos, Peru.
Decreased.

Daniel M. Brooks^{1,4}, Lucio Pando-Vazquez² & Angel Ocmín-Petit^{3,5}

COMPARATIVE LIFE HISTORY OF COTINGAS IN THE NORTHERN PERUVIAN AMAZON

© The Neurological Outpatient Society
ORNITHOLOGIA NEOTROPICALIS, 10: 193-206, 1999

FIG. 1. A map of the study region. 1 = Iquitos (major city), 2 = Amazon River bank site, 3 = Yana Amazon Riverbank, 4 = Yana Amazon Riverbank, 5 = Sucusam Tributary/Camp, 6 = ACEER, 7 = Yatana Island/Bosaso Island, 8 = Chimguy Lake, 9 = Lorentzo Lake, 10 = Loco Tributary, 11 = Casares Lake, 12 = Maran Tributary.

11026) had arachnid remains in its stomach. The most general trend for feeding strategy was that smaller species tended to be gorgers, medium and larger sized species shifted their diet seasonally depending upon whether fruits or animal prey are more abundant, and the largest two species enjoyed the reverse (i.e., males being females towards the end of the year). In sum there appears to be a general trend towards fruits that grow along the river (Table 1). The gorgers enjoyed the fruits such as palm fruits, while the others enjoyed the fruits such as the largest two species which were more abundant, and the females being relatively larger in the smaller species towards the end of the year. For males and total length there is a trend of chord ($r = 0.431$, ns, $N = 9$), sexual dichroism ($r = 0.502$, ns, $N = 9$), N/F wing chord ($r = 0.531$, ns, $N = 9$), or ornamentalism ($r = -0.554$, ns, $N = 9$).

Throughout the study, courtship strategy was the same for each sex per species. In cases where specimens were represented by play group, and competition in feeding trees, (type of courtship and number of males/size) included those that were closer to the same phylum. Mass was used to measure size, and sexual dimorphism parameters included those that were closer to largerly supplemented with the literature, and Dpt. Lizards, additional specimens measured less than four individuals of a given sex from cases where specimens were represented by play group, and competition in feeding trees. In four species of each sex per species, in

which diet set smaller species tended to be gorgers, medium and larger sized species shifted their diet seasonally depending upon whether fruits or animal prey are more abundant, and the largest two species which were more abundant, and the females being relatively larger in the smaller species towards the end of the year. For males and total length there is a trend of chord ($r = 0.730$, ns, $N = 9$), sexual dichroism ($r = 0.728$, $p < 0.05$, $N = 9$), N/F wing chord ($r = 0.726$, $p < 0.001$, $N = 9$) and N/F mass ($r = 0.976$,

at least one specimen (LSUNMS).

Feeding strategy. All species are primary frugivores, consuming small invertebrates such as

spiders (Snow 1971). In contrast, soft-rayed, spineless, courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

frugivores.

Courtship strategy for the

group may also be more probable for

TABLE 1. Life history parameters of nine sympatric cotingas.

Parameters	Species ^a								
	Ii	Pp	Cm	Cc	Lv	Pn	Qp	Gf	Co
Mean mass (g)	18	49	70	76	77	95	111	284	571
Sexual dimorphism									
Male/Female mass	0.80	0.91	0.93	^b	0.99	0.97	1.06	1.49	1.65
M/F total length	0.91	0.97	0.96	1.08	0.99	0.92	0.93	1.02	1.14
M/F tail length	0.87	0.91	0.91	1.01	1.00	0.89	0.93	1.03	1.08
M/F wing chord	1.03	1.03	1.02	0.94	1.06	0.93	1.05	1.09	1.12
Sexual dimorphism ^c	1	3	3	3	0	2	1	1	0
Sexual ornamentation ^d	1 ^m	0	0	0	0	0	0	1	2
Feeding ^e	g	^b	g	g	s	^b	s	r	r/s
Habitat ^f	c ^m	v	c/v	c	m	u	u	v	i
Sociability									
Mean flock size	1.0	1.0	1.2	1.5	2.9	1.0	2.4	1.5	2.1
Relative abundance	1	2	11	29	44	2	29	31	35
Courtship strategy									
Sexual dichromatism and sexual ornamentation									
Number of males/display group	> 1 ^m	1 ^m	1	1	Several ^m	Several ^m	1/fem.	^b	1/fem ^g
Solitary male or lek ^h	^b	^b	sol.	b	lek	lek ^m	lek/sol.	lek/sol.	sol.
Visual or vocal	^b	^b	visual	^b	vocal	visual	visual	visual	vocal
Competition at feeding trees ⁱ									
More than 1 sex present yes	yes	^b	yes	yes	^b	yes	^b	^b	^b
Other cotingas present ^j	^b	^b	c	m,q,g ^k	^b	^b	c	m ^k	^b

TABLE 1. Continuation.

Parameters	Species ^a								
	Ii	Pp	Cm	Cc	Lv	Pn	Qp	Gf	Co
Other species present ^j	^b	^b	s,p	m ^b ,t,f	^b	^b	yes	k,m ^k	c
Food competition between sexes									
M/I ^l maximum gape	0.98	0.99	1.03	0.99	0.93	0.97	1.07	0.95	1.10
M/I ^l mandible height	0.95	1.01	0.73	1.00	1.00	0.77	0.84	1.10	1.47

^aSpecies: *I. isabellae* = Ii, *P. porphyrolaema* = Pp, *C. maynana* = Cm, *C. cayana* = Cc, *L. vociferans* = Lv, *P. nigricollis* = Pn, *Q. purpurata* = Qp, *G. foetidus* = Gf, *C. ornatus* = Co.

^bData not available.

^cSexual dichromatism: 0 = none, 1 = slight, 2 = moderate, 3 = extreme.

^dSexual ornamentation: 0 = none, 1 = slight, 2 = moderate.

^eFeeding strategy: g = gorgor, s = seasonally resource specialist, r = riverine specialist.

^fHabitat association: m = mid-upper strata, u = upper strata, c = canopy, v = varzea/water edge, i = island varzea.

^gA male may displace another male from a preferred calling site.

^hLeks are often loosely associated.

ⁱQuantified by whether other individuals were ever observed at tree or not. Lack of data should be interpreted as species possibly shared resource patches with other individuals, but it went undetected.

^jc = *C. cayana*, m = *C. maynana*, q = *Q. purpurata*, g = *G. foetidus*.

^kIncident involving a female *C. cayana* and *L. hypopyrrha* simultaneously mobbing a female *Gymnoderus* in primary rainforest canopy, atypical habitat for *Gymnoderus*. The *Gymnoderus* flew off shortly after being mobbed and was probably simply moving through the atypical habitat.

^lk = Plumbeous Kites (*Ictinia plumbea*); s = Short-tailed Parrot (*Graydidascalus brachyurus*); p = Cobalt-winged Parakeet (*Brotogeris cyanoptera*); m = Cinereous Mourner (*Laniocera hypopyrrha*); f = Crowned-slaty (*Empidonax aurantioatrocristatus*) and Dusky-chested Flycatchers (*Tyrannopsis luteiventris*); c = Giant Cowbird (*Scaphidura oryzivora*); t = Blue-gray Tanager (*Thraupis episcopus*).

^mData supplemented or obtained with one or more of the following: Wallace 1849, Von Hagen 1937, Nicéforo 1947, Sick 1951, 1954, 1979, 1993; Ellis 1952, Pinto 1953, Snow 1961, 1971, 1982, 1985; Diamond & Terborgh 1967, Haverschmidt 1968, Béraut 1970, Howe 1982, Hilty & Brown 1986, Terborgh 1986, Terborgh *et al.* 1990, Trail & Donahue 1991, Davis 1993, Ridgely & Tudor 1994, Thiollay 1994, Brooks 1998.

It is important to note that different results might be obtained at other study sites, even with slightly different communities (M. Therry pers. comm.). For example, of 11 forest-wetland sites in French Guiana, at

The pattern of size dimorphism (mass and tail length) increasing with larger males is concordant with Snow's hypothesis (1982). Although not significantly correlated with size, smaller species such as *Perophoraviridis* and *Calymene* show increased sexual dichromatism which is often correlated with species that are more gregarious (Schoener 1970). Thus what certain species lack in sexual dichromatism they may partly compensate for through intense vocalizations (non-dichromatic species also communicate). Non-dichromatic species sexual ornamentation with slight or moderate sexual dimorphism. The males of some species are more gregarious than others, and the degree of sexual dichromatism is correlated with the degree of gregariousness (Schoener 1970).

ing sites (see Andersson 1994).

The benefit of females generally being larger in smaller species may be linked to parental investment (see Payne 1984). For example, larger eggs and offspring size would have a reduced chance of predation and therefore favor mothers of smaller species being larger (see Lack 1968, Andersson 1994). Alternatively, smaller females in fluctuating environments may be able to breed at an earlier age than larger females, thereby breeding at a younger age would favor smaller females of the larger species (see Dowd 1976). Finally, males of larger species such as courtship (e.g., *Cephalopeters*) may benefit through enhanced defense of resources such as courtship.

groups (Teall & Dohahue 1991).

examined unpaired size dimorphism in characters of mass and tail length (rather than total

NOISSOCSIC

Moreover, during more than 10 weeks of field time we only observed a single direct gynandrotrophic interaction at a feeding tree. This was an incident involving a female *Cochthilia agathae* and *Lamiochera hypopygialis* a female *Cochthilia agathae* after being mobbed and was probably a result of *Gymnoderus*. The *Gymnoderus* flew off unforced canoply, which is a typical habitat for *Gymnoderus*. The *Gymnoderus* probably simply moving through the typical habitat.

competition at feeding sites. Data for seven of the nine species indicate that more than one sex, species of coturnix or pectoralis of bird may be present at the same feeding tree (Table 1). However, with the possible exception of *C. b. blythi*, there appears to be a relatively high amount of feeding morphology overlap between sexes (Fig. 3). Nonetheless, several observations suggest relatively low food

coloring cannot be detected as well under the canopy the males compensate through active courting such aslekking and/or vocalizing to lure in females. The benefit is decreased predation risk below the canopy but the cost is increased energy expenditure during courtship; 3) Males of larger species are forced to retreat to the habitat containing the preferred resource. The male typically courts a female using subtle ornateation, as well as calling in some species.

Courtship starts: Smaller, supra-canopy dweller species tends to be more territorial (Table 1). The males of Primarily large species (that mass) attract females through vocalizations and/or subtle ornamentation (Table 1). Such vocalizations are often more intensified in birds dwelling in interior forest (Norton 1975) as seen in the case of *Lophagias* for example. The common underlying pattern here is that males utilize different adaptations to lure females to their courting site.

The number of males displaying to females can be divided into three general patterns (Table 1). Smaller species tend to have only one male courting at a time, even if polygamy is involved. In one aforementioned case a single male *Myiodynastes* displayed to two females about 25 m away in an adjacent tree. Males in this case were 40,000 m². Finally, 3) the larger species (*e.g., Gentrya* and *Cephalopterus*) are quite variable depending upon the situation, but a single male tends to court one female. In sum we see a trend from solitary male systems including polygamy in the smaller species, to lekking in the medium sized species, to the smaller species in the larger species (Table 1).

Despite species packing rules (i.e., an area of the same size will contain more smaller species and fewer larger species; see Corriveau 1993) the trend of relative abundance explained by variation in species biology. For example, *Populigryllus*, a smaller species, is unusually rare and is encountered with far less frequency in the field than most of the other species with the possible exception of the other and *Podofrenia* and *Phoebeurina*. Therefore the low abundance of these species is likely a loose-ly-associative. In contrast *Lophagias* is a loosely-asso-

Male reproductive strategy. Fruit as the main food resource appears to play an important role in the lives of most species. Fruit is always present temporally but often upre- dictable spatially. A lack of territoriality is not blossoming within the defended area. The main benefit of a clumped, temporally pre- dictable resource is increased foraging time (i.e., foraging time). The lack of territoriality more than one female results in intense males combined with the potential to mate females to raise the offspring alone (Snow 1985). The lack of territoriality between the female with more than one female, and allows mate with more than one female, and allows the female to raise the offspring alone (Snow 1985).

Despite the lack of competition for food resources, there is a relatively low amount of feeding morphology overlap between sexes (Fig. 3). Perhaps this merely suggests that males and females of most species that share the same food resources, rather than compete for them (see Clinton-Brock & Harvey 1977), are at the same resource patch on more than one occasion.

revealed a different picture. Of those species in the *Cohigna* clade that *C. mayanana* is closest related to (e.g., *C. amabilis*, *C. ridleyae* and *C. nattereri*), *C. mayanana* resembles *C. cayana* the least because it has a yellow tarsus and predominantly blue wings rather than dark tarsus and wings like *C. cayana* and the other species.

FIG. 4. General life history trends in nine species of cotingas.

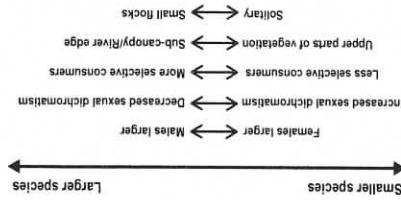
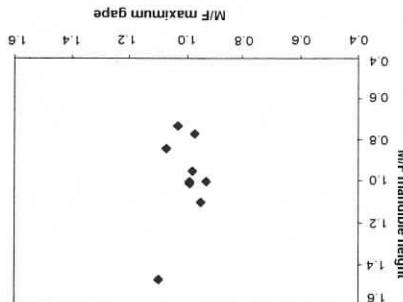
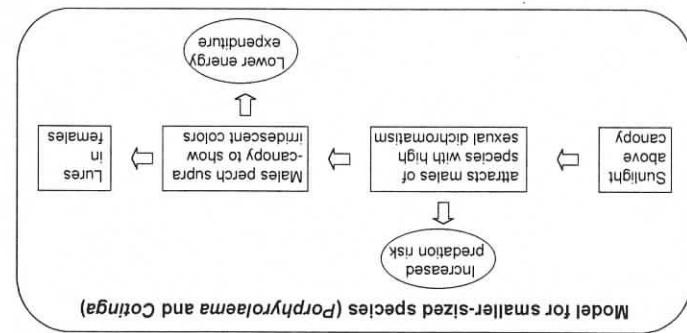
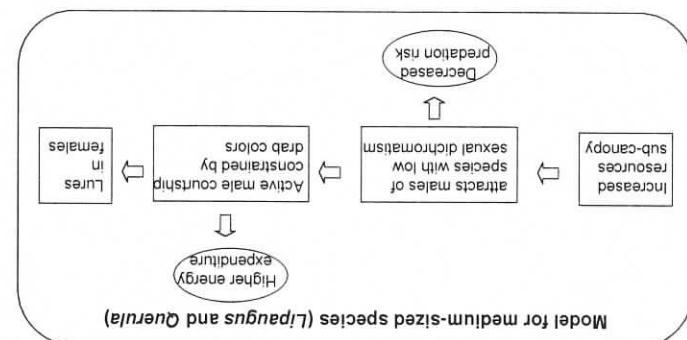
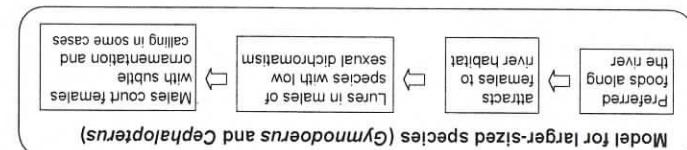



Fig. 3. Food overlap between sexes.

OUTLINES OF HISTORY STRATEGY




lack of competition for food resources. There appears to be a relatively little competition for similar food resources. Moreover fruit grows in clumped resource that varies seasonally in spatial distribution. It is not profitable for primates to forgo resources to defend a resource that occurs with any predictability within a patch (see Brown 1994, Snow 1985).

Female *Scutigera coleoptrata* are more social than males (Fig. 4). Whereas females of the more social species are lured to display sites by male acuity (e.g., lekking, vocalizations, etc.) (Fig. 5),

What *lures* females to their *habitat*? Larger species tend to be increasingly selective in their diet, while smaller species to their fruits (Sick 1993). Thus it is plausible, at least for these larger species, that distribution within a landscape is dictated by their preferred foods (Fig. 4). In contrast to be increasingly selective in their diet, females tend to be increasingly selective in their diet, while smaller species to their fruits (Sick 1993). Thus it is plausible, at least for these larger species, that distribution within a landscape is dictated by their preferred foods (Fig. 4). In contrast

large tree species were both water and nutrient-rich environments such as palm trunks. The two largest species were both edge specialists in terms of habitat preference. This is probably a consequence of their preference for edges of habitats (Snow 1982). Contrary to the strong sexual dimorphism (Snow 1982), showy species (*Proctis atlas* and *Rhipidura rufifrons*) show little size differences between the sexes.

FIG. 2. Variability in life history strategies among different groups.

ACKNOWLEDGMENTS

REFERENCES

Von Hagen, W. 1937. On the capture of the *umbrella bird* (*Cphadophorus penicillatus* Scare). *Proc. Zool. Soc. London* 27-30.

Wallace, A. R. 1849. On the umbrella-bird (*Cphadophorus ornatus*). *Proc. Zool. Soc. London*. 206-

207.

Weberste, M. S. 1992. Sexual dimorphism, mating systems and body size in New World blackbirds (Icterinae). *Evolution* 46: 1621-1641.

207.