Apples to Apples [Exploring Solar Energy]


December 2, 2010
115 Views

One of my favorite games to play is Apples to Apples. Each round works like this: You have 5 cards in your hand. Each card has a noun on it such as Coal, Sean Connery, Italy, My bedroom, or Cantaloupe. An Adjective card, such as Colorful, is played. Each player puts a noun card down that they think goes best with the adjective card. The judge then ranks the played cards by which he feels best fits the adjective. Whoever has the best card wins a point, and then the judgeship rotates. It is a great group game and involves a lot of trying to figure out how the judge thinks (in my family the Sean Connery card always wins).

Sometimes comparing the different costs of electricity generated by different sources can be like that, especially electricity generated from Photovoltaic (PV) solar cells.

Panneaux photovoltaïques
Creative Commons License photo credit: Trebosc

The price for putting a Solar PV array in your house includes the cost of the unit, the cost of the installation, and the cost of the maintenance. Once the system is installed, you are not paying for the energy it produces. When you see the cost of solar electricity compared to the cost of other sources of electricity, the cost of solar remains high. Why is that?

Well we have to count a number of factors into it to make a comparison. First is the cost of the PV array. They are expensive. It is a major up front investment for most people. Depending on which system you pay for it could be anywhere from $1,000 to $45,000. Some PV providers include installation and maintenance and some don’t. The system does end up paying for itself, but it takes time. PV arrays will usually have a lifetime of 20-30 years. That’s a long time to wait, but you just might have that house for 20-30 years.

Now we have to figure out how much electricity the PV is producing over its lifetime. Just because a PV array tells you a number, like 250 watts, does not mean that the PV array is always producing 250 watts of electricity. It does mean that it can produce up to that number. There are times when the PV array will produce no power, mainly night and particularly in bad weather. But, just because the sun is out does not mean that the PV array is producing at its maximum. The sun moves all day long (well, it looks like its moving), and it gives off different amounts of light depending on where it is in the sky. That’s why the measuring system called “peak sun hours” was invented.

During solar noon, when the sun is directly overhead of a given spot (1 meter squared), that spot receives 1,000 watts or 1 kilowatt. If the sun is overhead for an hour, that would be 1 peak sun hour or 1,000 watt hours per meter squared. Now that we have a standardized measurement we can figure out how much electricity our PV array is producing a day.

overhead it is sun
Creative Commons License photo credit: Torley

Once I figure out how many peak sun hours there are in my area, I can multiply that by how many watts the PV array produces. Let’s say I’m in Texas and I get 4.5 peak sun hours a day and I have a 250 watt PV array. That means I would get (250 X 4.5) 1125 watt hours a day. Notice also that those 1125 watt hours are spread over a 12 hour period (24 hours if you want to include night). So that means I would get an average of 93.75 watts per hour, although the actual amount I get would vary widely through out the day.

The PV array would be able to work 7 days a week. Remember the lifetime of the PV array is 20–30 years. That’s around 9,125 days. All that means is that the array will produce 10,265,625 watt hours over its lifetime (or 10,265.625 kilowatt hours). Now if the system originally cost $10,000, that would mean the electricity it created cost $1 a kilowatt hour. When the average cost of a kilowatt hour in Texas is 11 cents, solar energy can be quite high.

After saying all that, solar energy still has a bright future. Each year, the PV panels get more and more efficient, and the cost for producing them keep going down. In the future PV cells will be a corner stone of a smart electrical grid and smart houses.

Daniel
Authored By Daniel Burch

An inveterate punster, amateur chef, and fencer, Daniel B has a double degree in History and Museum Science from Baylor. He currently serves as the Assistant Program Coordinator for the Wiess Energy Hall and Adult Education at HMNS.

One response to “Apples to Apples [Exploring Solar Energy]”

  1. Claire Stiles says:

    I really like the introduction into this blog. But you should remember that the Faith/Jesus card always beats Sean Connery.

Leave a Reply

Your email address will not be published. Required fields are marked *

Become An HMNS Member

With a membership level for everyone; Don't just read about it, see it.

View All Membership Levels

Editor's Picks April Educator How-To: Make a Roman Mosaic What’s The Splatter? The Science Behind Bug Guts on your Windshield. 5 Of The Rarest Objects On Display At HMNS Questions From A Perceptive Third Grader New Special Exhibition at HMNS – Vanishing Arts: Highlights from the Beasley-Hwang Collection Your Spring Break Guide for a Fossil-filled Visit to HMNS
Follow And Subscribe

Equally Interesting Posts




HMNS at Hermann Park

5555 Hermann Park Dr.
Houston,Texas 77030
(713) 639-4629


Get Directions Offering varies by location
HMNS at Sugar Land

13016 University Blvd.
Sugar Land, Texas 77479
(281) 313-2277


Get Directions Offering varies by location
George Observatory

21901 FM 762 Rd.
Needville, Texas 77461
(281) 242-3055

Hours
Tuesday - Saturday By Reservation
Saturdays 3:00PM - 10:00PM
Saturdays (DST) 3:00PM - 11:00PM
DST = Daylight Savings Time.
Please call for holiday hours. Entry to Brazos Bend State Park ends at 9:30 p.m. daily
Get Directions Offering varies by location

Stay in the know. Join our mailing list.