Educator How-To: The eyes have it in this DIY optical illusion

Your eyes are amazing sensory organs. They help you understand shape, color and form, judge distance and alert you to potential dangers. What you perceive as “seeing” is actually the result of a complex series of events that occur between your brain, your eyes and the world around you.

Light reflected from an object passes through the cornea of the eye and moves through the lens, which focuses it. The light then reaches the retina at the very back of the eye, where it meets a thin layer of color-sensitive cells called the rods and cones. Information from the retina travels from the eye to the brain via the optic nerve.

Because eyes see from slightly different positions, the brain must mix the two images it receives to get a complete picture. The light also crisscrosses while going through the cornea so the retina “sees” the image upside down. The brain then “reads” the image and turns it right-side up.

The rods and cones are what you call photoreceptors. When they are overworked, they lose sensitivity. Normally the small movements of your eyes that you make unconsciously, or regular blinking, will keep these photoreceptors sharp and happy. If you are looking at a large enough image, where your eyes can’t rest, or if you purposely hold your eyes still, you will tire out your poor rods and cones and they will adapt to this overstimulation by no longer responding. When you move your eyes to a blank space, your worn out photoreceptors create an “afterimage”.  An afterimage is where your eyes produce a ghost image, like when you stare at something a little too bright and you see dark spots in your field of vision. In an afterimage, light portions of the original image are replaced by dark portions and dark portions are replaced by light portions.

Try this out for yourself by doing the following activity. 

You will create the Texas state flag in some unusual colors. After you stare at this incorrectly colored flag and have worn out your photoreceptors, looking at a blank wall will create a ghost image of the Texas state flag in red, white and blue!

Activity:  Negative Afterimage

Materials:
Scissors
Glue
Paper
Green construction paper
Black construction paper
Yellow construction paper 

Ed How To Optical Flag 1

Procedure:

1. Cut your green and yellow papers in thirds, width-wise.

Ed How To Optical Flag 2

2. Cut a star out of the middle of your yellow piece.

Ed How To Optical Flag 3

3. Glue the yellow piece to one end of the black piece.
4. Turn the black paper so that your yellow piece is placed on the left.

Ed How To Optical Flag 4

5. Glue the green piece to the bottom of the black piece.
6. Trim off any extra green.

Ed How To Optical Flag 5

Now stare at the flag for a minute or so. Try not to have much in your peripheral vision so that you can concentrate on the flag.

Look away from the flag at a neutral colored wall or piece of paper.  You should be able to see the flag in red, white and blue!

Ed How To Optical Flag 6

Have a school group and want to know more about how your eyes work?  Sign up for an Eyeball Dissection with our Labs on Demand.  These labs make a great addition to a field trip, but are also available to come to your school.

Interested in knowing more about how your body works?  Visit Body Carnival, a carnival-themed interactive exhibit that explores the connections between perception and the laws of physics in the human body, at HMNS Sugar Land. Enjoy learning about the human body while investigating force, pressure, light, and color. Crawl through a giant artery to see and hear the effects of restricted blood flow, test your balance in the 10-foot Dizzy Tunnel or don a pair of vision-distorting goggles and discover how sight affects your ability to walk straight. There’s a lot to explore!

 

I can’t find my reading glasses, but I’ll manage.

You’ve probably noticed the magnifying effect of a glass of water or any other clear beverage (the black text to the right of the glass is the same size as the black text behind the glass):

And you probably have some idea that the magnification has to do with the curved shape of the glass and the water it contains: The water in the glass bends light so it appears to us to be coming from an object that is bigger or closer than it really is.

To explore this more, try making differently sized water drops on top of a sheet of waxed paper (the waxed paper helps the water ‘bead up,’ which improves the effect):

You’re aiming for a large drop about 2 centimeters or 1 inch across, and medium and small drops that are, well, smaller.  If you don’t have an eyedropper to help you, you can either pour extremely carefully or dip a pencil or spoon in water and let the water drip off of it.

Look at a page with words through the drops (don’t use your first editions of The Old Man and the Sea or Einstein’s General Theory of Relativity, because the water will eventually seep through the waxed paper and make you very, very sad).  Do you see any differences between the larger and smaller drops?

This looks much clearer if you try it yourself, so go do it! 

You may be thinking “My large drops (possibly puddles) don’t seem to change anything; why do the small drops work so much better?”  To explain this, try looking at your drops from the side (your eyes should be level with the surface of your table:

The shapes are different: The largest drop looks almost flat across the top, while the smallest drop makes a very tidy little dome shape.  Another way to say this is that the smallest drop’s surface is more sharply curved, or is more convex than the larger drops (convex surfaces bulge out, concave surfaces “cave in.” And it turns out that the less convex the surface of the drop, the less it magnifies.  If you want a more in depth explanation with diagrams, check out this site.

Convex and concave lenses are used in all kinds of cool equipment. For more information on lenses and the anatomy of your eyeballs, check out The Anatomy of the Eye.