When you wish upon a shooting star…it’s probably a meteoroid

Perseid Meteor 8/12/08
Creative Commons License photo credit: aresauburn™

The Perseid Meteor Showers, which occur every year around this date, are caused by the comet Swift-Tuttle. The comet itself was discovered in 1862, and could be seen again with binoculars in 1992. Calculations have shown that the comets witnessed in China in 188 A.D. and 69 B.C. were most likely the same comet. It is suspected that the comet should pass close enough to the Earth in 2126 to be visible to the naked eye (looking forward to that!) The comet should pass with in one million miles of the Earth in 3044 (a near miss.) The comet is approximately six miles across, which is the estimated size of the comet that killed off the dinosaurs millions of years ago.

Although the comet itself is currently far away, the Earth passes through the comet’s debris every year. The majority of the debris (meteoroids) is pea- or marble-sized and enters Earth’s atmosphere at roughly 133,200 mph (which is roughly 2,220 times faster than a car on the freeway, and 12,100 times as fast as I can run at top speed.) As the particle enters the atmosphere, it compresses the air in front of it, which heats it up. The temperature rises to about 3,000 degrees Fahrenheit, which vaporizes the meteorite, creating the effect known as a “shooting star.”

Although a few of the meteorites could be seen last night and a few more tomorrow night, the best viewing time is in the predawn hours following tonight. In honor of such a spectacular natural occurance, the George Observatory in Brazos Bend Park will stay open from 9 p.m. tonight until 5 a.m. tomorrow morning

 This informational video was made for the 2008 Perseid Meteor Shower
The dates are slightly off, but all the other information is correct

Wherever you’re watching, you can use Twitter hashtag #meteorwatch to follow the action and ask questions!

This month, see a ‘Hairy Star!’

An unexpected visitor graces our skies this month.  Comet Lulin is now visible through binoculars in late evening and morning skies.  It makes its closest approach to Earth on February 24, when it may even be dimly visible to the naked eye!

Comet Hale-Bopp
Creative Commons License photo credit: tlindenbaum

Comets are made of ice and dust and are often called ‘dirty snowballs.’ They are believed to be left over from the formation of the solar system.  As comets approach the sun, ice changes into gas and the dust embedded within the ice is released.  A cloud of particles expands out to form a coma around the comet’s solid nucleus. This coma may be a hundred thousand miles across. Radiation pressure of sunlight and the powerful solar wind sweep gases and dust off of the comet, forming tails pointing away from the Sun. The coma and tails of a comet reminded the ancient Greeks of hair; the Greek word ‘kometes’ means ‘hairy.’   

Astronomers traditionally name comets after their discoverers.  On July 11, 2007, Lin Chen-Sheng of Lulin Observatory in Nantou, Taiwan took some photographs of the sky.  The photos were part of the Lulin Sky Survey, in which astronomers search the sky for Near-Earth Objects which might pose a risk of colliding with Earth.  One of his students, Ye Quanzhi, spotted what he thought was an asteroid in three of the pictures.  Closer observation, however, revealed the coma of a comet.  Officially designated C/2007 N3, the comet was named Lulin after the observatory where it was discovered. 

Here are some interesting facts about Comet Lulin’s orbit:

The eccentricityof an orbit describes its shape.  Bound orbits are ellipses with eccentricities between 0 and 1; 0 is a perfect circle while 1 is a parabola.  Lulin has an eccentricity of 0.9999948, almost 1.  This indicates an orbit so oblong that Lulin won’t return to the inner solar system for about 50 million years.  Some sources indicate an eccentricity slightly greater than 1.  In that case, Lulin will never again approach the Sun.

Lulin was closest to the Sun (at perihelion) on January 10.  But it approached the Sun from the far side (from our perspective).  Thus, as Lulin recedes from the Sun, it approaches Earth, with closest approach on February 24.  Not to worry, though–even at its closest, Lulin will be about 150 times as far away as the Moon.

Many comets’ orbits are highly inclined to ours.  (An inclination of 0 degrees would describe an orbit in the same plane as Earth’s orbit.)  Comet Lulin has an inclination of 178.37 degrees.   This inclination of almost 180 degrees puts Lulin back in the plane of the solar system, orbiting backwards compared to the planets’ orbits. 

Since Lulin orbits almost in Earth’s orbital plane, we see not only a tail but an ‘anti-tail.’  This is dust and debris left behind as the comet moves on its path.  Lulin is now moving away from the Sun, so the dust it leaves behind seems to point towards the Sun. The true tail of a comet always points away from the Sun (and therefore, the tail leads the comet as it moves away from the Sun). 

The Hale-Bopp Comet
Creative Commons License photo credit: Wolfiewolf

Because Lulin is roughly in the plane of the solar system, traveling backwards, it appears against the same zodiac band where we find the Sun, Moon, and planets in our sky.  As I type this, Lulin is among the stars of Virgo, the Virgin, moving towards Leo, the Lion. 

As we pass more or less between the Sun and Lulin next week, we’ll see it in Leo, first near Saturn and then near the bright star Regulus.  Lulin will be rising in the east at about dusk, highest in the sky about midnight, and setting in the west just before dawn.  Since Lulin and Earth are going in opposite directions, we see Lulin move quite noticeably night to night. 

This page has some finder charts for Lulin.  Some observers have reported seeing Lulin naked-eye, at the threshold of visibility.  You must get far from city lights, therefore, to see it without binoculars or a telescope.  Remember to scan the sky for a diffuse object about half as big across as the full Moon (and much dimmer than that), not a point of light.  Those who saw the spectacular comets Hyakutake and Hale-Bopp in the ’90s should keep in mind that Lulin will be barely (if at all) be visible to the unaided eye and will not come close to their displays.  If you find Lulin, see if you can follow it as it gets dimmer but higher in the evening sky in March. 

Once it fades away, we’ll never see it again.