The Greatest Dinosaur-ologist Ever! The Reverend Edward Hitchcock.

Congregationalist Minister, Director of the Massachusetts Geological Survey, and First to Prove that Dinosaurs Had Feathers.

Part Two: U-boats and the Knuckle Decipherment.
(Read Part One Here)

image-1

Ferocious Flat-foots frighten second grader. A cartoon from Punch 1855 shows three dinosaurs restored at the Crystal Palace as big-shouldered and flat-footed. Supposedly kids were dragged kicking and screaming through the rows of monstrous sculptures.

 

Last year we left our dear friend, the Reverend Hitchcock, footprint sleuth of the 1830’3-50‘s, close to solving the riddle of the track-makers who stomped all over his Jurassic landscape. It wasn’t just a local New England puzzle. Similar tracks were excavated in Europe, Asia, Africa, Brazil — everywhere sediments were dated to the Jurassic, Late Triassic and Cretaceous. Hitch knew these beasts were bipeds, striding swiftly across muddy flats and sand bars, holding their heels high off the ground. Could they have been dinosaurians?

Absolutely, positively NOT! All the wise men of paleontology said Hitch’s tracks were totally, completely, astoundingly different from the imprints that would be made by a real-life dinosaur. All the textbooks and monographs said that dinos were flat-footed quadrupeds, and that’s the way they were restored as life-sized sculptures in the Crystal Palace Exhibition in a park just outside of London in the 1850’s. The 3-D dinos proudly displayed all the latest discoveries from the very best minds in Europe. This exhibition was the first “Jurassic Park” style extravaganza anywhere. Record crowds came and gawked at the Jurassic and Cretaceous behemoths. Three separate dino species were shown in giant models, plus assorted extinct crocs, ‘dactyls and sea-reptiles. All three dinos were shown as pentadactylus flat-footed monsters. All had forefeet as big as their hind feet and monstrously muscled shoulders. All the officially sanctioned dino-models on sale at the gift shoppe were five-fingered and five-toed too.

You could buy posters of the dinosaurian flat-foots and tiny miniatures cast in lead to act as paperweights or kids’ toys. Textbooks and encyclopedias were swayed by the exhibit and carried the same anatomical message. The Dinosauria as a group had legs like bears, with forepaws designed to excavate holes and bring down prey with one swipe of the claws. Tracks made by such beasts would, of course, display five digits fore and aft. The footprints had to leave big flat-footed sole marks too. Therefore, Hitchcock’s track-makers couldn’t be dinos, everyone knew that. Hitch’s favorite Jurassic critters had three main toes in the hind paw, arranged so the middle toe was the longest. Hind feet were gigantic, dwarfing the front paws in the few species who came down on all fours. Nothing could be more different from what science had discovered about dino paws.

image-2

Don’t be misled by the cryptic title. Here’s the best book on the Enigma Machine during World War II. Read this book to get the true story of Alan Turing and the cracking of the Nazi U-Boat code, as portrayed in the hit movie “The Imitation Game”

Triumph of the Congregationalist Mind: The digital decipherment. 
There was a puzzling disconnect between what the bone-scientists said and what Hitch and his fellow track-analysts were thinking. The bone guys saw dinosaurs as the commonest big land animals of the Jurassic, and the dinos were four-legged flat-foots, so they thought. Oddly, no one could find fossil footprints that matched the dino reconstructions. There were no giant flat-footed tracks in the rocks that contained giant dino skeletons. Odd, very odd.

Hitchcock ignored dinosaurs as they were reconstructed in Europe. He focused on bringing back to life the bipeds who had left behind the spectacular tracks in New England. To realize his life’s goal he needed to “see” the foot skeletons of his track-makers. But he had no fossilized pedal petrifications. No ankle bones; no toe bones, no fingers. He needed a miracle. He needed time-traveling x-ray vision that would reveal exactly where each and every bone fit in each and every toe. Congregationalists didn’t believe in miracles, not in the normal course of scientific work. What Hitchcock believed in was the power of the analytic mind and the beautiful regularity in the design of Nature. Here all his sole-searching paid off big. He already possessed the best set of diagrams of feet from living species, thanks to all the time spent chasing critters across muddy fields. Now he needed to sit down and search for the key that would unlock the skeletal.

Hitch succeeded. He cracked the code of the tracks. This decipherment must stand as one of the most heroic triumphs in the history of de-encryption, right next to the cracking of the U-boat signals sent by World War Two’s Enigma Machine. That Enigma Code story is told in the movie “The Imitation Game” with Benedict Cumberbatch playing the math genius Alan Turing. During the early days of the war, England was being starved by the U-boat offensive.Cargo was being sunk so fast that food, ammo, and guns were running short. The key to the U-boat success was the system of commands coming from German naval headquarters, sent in a new code that was diabolically complex. Each message was encrypted by the “Enigma Machine” that scrambled and double scrambled and triple scrambled every word.

Turing and his crew were told “The Enigma Machine is impregnable — no one can figure it out.” The crew took that as a challenge. They triumphed! (Note: it was more of a team effort than shown in the movie). Soon the Brits were reading the Nazi messages before the sub commanders did. U-boats were intercepted. Depth charges were dropped with precision. Salvos of hedgehog rockets were fired (Google “hedgehog”). The undersea threat was neutralized.

uboatMs. Emily Dickinson and a World War II U-boat.  The U-boat is at the left. To learn more: “Dickinson, Selected Poems and Commentary” by Helen Vendler, 2010, Harvard University Press.

I imagine Cumberbatch or maybe Anthony Hopkins playing Hitch in the movie “Dino-Code Breaker”. I see Hitch hunched over his drawing board surrounded by pickled feet of local newts, frogs, toads and a bandicoot paw sent from Captain Cook’s explorations. Angelina Jolie, plays poet Emily Dickinson, a frequent visitor to the Hitchcockian lab. She brings him a cup of tea and a translation of a French monograph on mole feet. The candles burn down to their pewter holders. Light flickers.

“I’ve GOT IT!” Hitch leaps up, waking up Ms. Dickinson who was snoring in a rocking chair. “See…..it’s all in the knuckles! All in the pads under the joints.” Emily stares at the diagrams for a few seconds….

“Yes, I see it too. The Law of Knuckles!!!! There’s a single pad under each joint where two toe bones meet.”

image-3

Knuckle pads on the tracks of a squatting Anomoepus.

Hitch’s breakthrough came via one very special track-maker whom he had named Ano-moe-pus, meaning “Uneven Paws”. This is the species that occasionally squatted down and put its forepaws on the mud. There were three big hind toes pointing forward, the longest in the center, and a little one pointing inward. It’s knuckle-pads were exceptionally well defined so Hitch could see exactly where bones came together at each joint.

The little toe had just one pad — that meant it had just two separate toe bones meeting at the pad. There was a sharp claw protruding from the pad. We paleo-podiatrists use a formula, a digital short-hand, to express the toe-bone design. We number toes from the inside to the outside, so the human innermost toe (we call it our “big toe”) would be Toe I. The pinkie toe is Toe V. The middle toe, of course, is Toe III. Using the formula, we can say that Anomoepus Digit I had 2 toe bones, or to be technical, two phalanges (phalanx is techno-speak for toe bone; plural phalanges).

The next toe in Anomoepus, Digit II, had two pads = three phalanges. Digit III, the longest, had three pads = four phalanges. Digit IV had four pads = five phalanges.

I imagine beads of perspiration trickling down the Reverend’s forehead as he wrote down the toe formula for Anomoepus. He sensed that he’s close to the answer for all his mystery tracks. When done with Anomoepus, he had a digital formula of 2-3-4-5. What about the pinkie toe, Digit V? No pads, no claw. No toe bones. Score the pinkie toe as a big 0. Hitch’s mystery beasts had no pinkie toe!! 

Final formula: 2,3,4,5,0. That was a huge advance in eliminating suspects. Mammals were out. Basic mammal formula is 2,3,3,3,3. Never did mammals have more than 3 phalanges on any toe, so therefore Hitchcock could ignore any suspect that was furry. (Don’t take my word for it. Take off your socks and count your toes. Now do the same for a relaxed kitty or ‘possum).

image-4

Jurassic Enigma Machine. Each pad is where two bones met….so filling in the foot skeleton was easy. Anomoepus has a formula of 2-3-4-5-0

No way the track-makers could be five ton bandicoots and kangaroos. Frogs? Nope. They never had more than four phalanges in the hind toes.

Lizards? They did have more than 3 phalanges in their middle digits, but they usually had a pinkie toe and so carried the formula 2,3,4,5,3. Hitch’s memory ran through all the paws he’s examined. Who had 2,3,4,5,0 Interesting. Alligators! Crocodiles! Closer than lizards but these formidable reptiles had wide, flat feet. And their inner toe was too big and pointed forward. And and…..crocs and gators didn’t go about on their tippy-toes and didn’t run on hind legs alone.

Hitch was very, very careful, testing and re-testing any theory of the crime scenes in the Jurassic rocks. He didn’t make a rush to digital judgement. I see him pushing back back on his desk chair, smiling. He looks over to Emily Dickinson and nods. She nods back.

“….birds…” They say in unison, in still soft voices. “The mystery monsters are birds.”

BRILLIANT!!!!! Totally awesome — that was the very first time the foot of an extinct beast was correctly envisioned, without a single bone. Problem? The biggest track-makers were over ten times bulkier than the heaviest ostrich, judging from the track size. Hard to believe? Well, no; there was precedent. Richard Owen, most famous paleontologist of the time, had announced fossil birds from New Zealand – the “Moas” — that were so huge they must have reached a ton or so. And the complete hind feet looked exactly like thick, heavy duty versions of Hitch’s Anomoepus. Moas had survived almost to the present day before the Maori hunters wiped them out. It could be that the moas were remnants of a world-wide Jurassic ground-bird dynasty.

image-5

Big bird, recently extinct. Hitchcock’s diagram of a moa foot and a moa exhibit at Moscow’s paleontological museum.

In 1858 Hitchcock’s careful, exquisite scrutiny of all things digital and phalangeal won praise from colleagues all over the scholarly globe. “He’s done it! He’s proven that a great Subclass of Flightless birds ruled the Jurassic.” There were only two lingering problems for Hitch’s theory:

Where were the wings? In the specimens with front paw prints, there were five short fingers. Bird wings have three long fingers (check the bucket of buffalo wings next football game). Hitch had to conclude that his Jurassic avians were flightless and used their stubby-fingered hands for digging, not flying.

The second problem was the tail. There were imprints in some Anomoepus specimens that might be from a long, thick tail. Birds today never have much of a tail and never with long bones and massive muscle. But maybe the Jurassic birds did have a mighty caudal appendage?

Both problems got solved by a skeleton dug in 1862, from a Jurassic quarry in Germany. A delicate raven-sized skeleton was a near perfect match for Hitchcock’s prediction of a Mystery Track-maker: the hind legs were long, especially in the ankle; the hind foot had a 2-3-4-5-0 layout; and the front paw had claws on the fingers. The rear end was wonderful; there was a long, strong, bony tail. Skeleton-wise, the little fellow was a fine example of a small Anomoepus.

Judging just from the leg bones, Hitch would’ve called the German specimen a bird. Ah…and here’s the delicious part. The skeleton came with skin, preserved as clear imprints on the limestone. The skin had feathers. Big flight feathers on the arms, wide feathers all along the tail. Yes indeed, this Anomoepus-like animal was clothed in feathers. The critter received the name Archaeopteryx.

Even more emphatic validation of Hitchcock came in 1866-68 when T. H. Huxley visited his chum John Phillips at Oxford University to talk over megalosaurs. As they pondered megalosaur legs, the two men exposed a case of osteological malpractice. Remember that Megalosaurus was a Jurassic meat-eating dino of large size. The bones were jumbled up by scavengers before burial, causing confusion — it wasn’t totally clear what belonged to the front end and what belonged to the rear. The English paleontologists in the 1820‘s and ‘30’s decided that the big, flat bone was a shoulder blade and the long skinny bone was a collar bone. That’s why the reconstruction showed immense forequarters and arms as fat as a bear’s.

Though most anatomists agreed, the restoration had serious front-end alignment issues. Professor John Phillips and T. H. Huxley showed that the giant shoulder bone of the Jurassic Megalosaurus was, in fact, a giant upper hip. And that hip that was very bird-like. The real megalosaur shoulder blade was narrow and bird-like. The real megalosaur hind feet weren’t five-toed and flat. They were arranged according to the pattern worked out by Hitchcock for Anomoepus. Properly restored, the megalosaur was a giant version of Anomoepus, just as Archaeopteryx was a mini-version. Megalosaurs had the exact body build necessary to make the biggish tracks studied by the Reverend.

image-6

Putting the hips where they belonged — painting by Luis Rey.

image-7

A hypsilophodont dino — feet matched Hitch’s Anomoepus.

More complete skeletons were dug for other dino families. The hypsilophodonts, smallish plant–eating dinos, had front and back feet that matched Hitch’s beloved Anomoepus tracks perfectly. At last it was clear that Hitchcock had been studying dinosaurs all along, starting in the mid 1830’s. He was dead right about the mystery monsters being built like birds and moving swiftly in flocks over the ground. All the European savants had been dead wrong when they stuck flat-footed paws and muscle-bound bear shoulders on their dinos.

Sadly Hitch had gone to his reward before the textbooks were rewritten. He received surprisingly weak posthumous praise. When I took paleo courses at Yale in the 1960‘s, Hitch got hardly a mention. Most dino-books even accused him of making a mistake when he called his track-makers “birds” instead of “dinosaurs”. No he didn’t make a mistake! He was right!! The track-makers were part of the avian family tree. All dinos were.

And therefore we dinosauro-philes of the 21st century must make amends. We doff our hats and give the credit where it’s due.

Mebbe…….we should write letters to Universal Studios and ask that they give a percentage of the billions made by the “Jurassic Park” franchise to the Massachusetts Geological Survey and to the Congregationalist Church of America.

……………………………………………………………………………..

* No one called him “Hitch” in public when he was alive. Still, he was so humble and accessible to students that I think, were he with us now, the nickname would have been ok.

p.s. Emily Dickinson’s (ahem) U-Boat poem

There’s no Book like an Unter-Boot
To drop us deep at Sea
Nor any Poetry as Perilous
As the Torpedoes’ stealthy speed —
This Traverse may the greatest take
And oppress them with the Toll
How deadly is the Chariot
That hunts the Human Soul.

A Tale of Two Compys: What Jurassic Park got right — and wrong — about dino anatomy

Bakker - Dino Geek JP 1

A piece of unapproved Ivy League art. Title: Podokesaurus holyokensis, Triassic/Jurassic Dinosaur, on the head of Michelangelo’s David. Material: Collage of Xerox images, clipped by scissors, Scotch taped together.  Date: March, 1964.  Artist: Robert Thomas Bakker, Yale freshman.

OMG I was such a dino-geek in college.

I had other interests — I was enraptured by sculpture and took the fabled freshman History of Art course. The collage shown here was taped together during the lectures on the Renaissance renewal of anatomically correct human form made famous by Greek sculptors. Last month, I found the collage in an old notebook, in the garage, under my copy of American Battleships, a Design History. (That’s for a future blog on the U.S.S. Texas.)

The tiny dinosaur is Podokesaurusat the time, one of two famous bantam-weight predators of the Late Triassic and earliest Jurassic, the first chapters in dinosaur history. I knew the critter well because it was dug from the red beds of the Great Triassic/Jurassic Valley. Those fossil-rich sandstones and shales filled a rift valley that extended from Nova Scotia to the Carolinas. The rift was as big as the East African Rift we see today.

Smack dab in the middle of the Triassic/Jurassic Valley was New Jersey, where I grew up. Not far north from my house were the Palisades and Granton Quarry, where Triassic flying reptiles had been discovered, plus long-snouted phytosaurs like our HMNS Smilosuchus, plus dino footprints.

The reason I applied to Yale was mostly because it had a museum chock full of red beds specimens. When I visited in 1963, Yale had a cast of the podokesaur skeleton on display — sadly, the original was destroyed by fire 50 years previously. Next to the cast was a lively life-sized sculpture, done by the Yale curator Richard Swann Lull.

“Nifty!” I thought. “Art and paleontology combined! This is the place for me.” The Yale museum was super hospitable to freshmen. I got a job cleaning a Triassic red beds skull — not a dino, but a bizarre plant-eating reptile, woodchuck-sized, with spikes coming out of the head like a tricked-out horned toad. These fellows must have lived in colonies. A bunch were dug from a small area in New Jersey. Podokesaurs surely chased these prickly morsels.

Late Triassic, New Jersey. A colony of vegetarian Hypsognathus emerges from their burrow. Maybe they had been hiding from podokesaurs, Maybe they had been watching Jersey favorite “The Sopranos” on HBO. Texas was host to a similar reptile. Extra points if you can find it in our Triassic mural.

Late Triassic, New Jersey. A colony of vegetarian Hypsognathus emerges from its burrow. Maybe they had been hiding from podokesaurs. Maybe they had been watching Jersey favorite The Sopranos on HBO. Texas was host to a similar reptile. Extra points if you can find it in our Triassic mural.

Freshman year also introduced me to the tradition of the “mixer” — parties where Yalies and young women from nearby colleges co-mingled. At a Mt. Holyoke mixer, I got an earful from female geology students who were steamed, justifiably, about gender bias. Old fogey Yale profs grumbled that “girls can’t lift heavy rocks […] can’t do serious fossil work.” Podokesaurus was a counterargument. It was discovered in 1910 by none other than Dr. Mignon Talbot, who was chair of the geology department. Talbot did her Yale Ph.D. on sea-lilies, crinoids, relatives of starfish that were abundant in Devonian rocks of New York State (we have some fab Jurassic crinoids in our hall). Dr. Talbot went on to become president of the college.

The Wikipedia portrait of Dr. Talbot. The label must’ve been written by a Yale Professor.

The Wikipedia portrait of Dr. Talbot. The label must’ve been written by a Yale professor.

Even though, as college president, she out-ranked most of the Yale faculty of her time, they insisted on calling her “Miss Talbot instead ofDr. Talbot. Yeesh. In 1965, the Yale director of graduate studies told me “Bob, we shouldn’t give Ph.D.s to girls … they’ll just get married and have babies.” Double yeesh!

But he didn’t know how famous her dinosaur would yet become! Dr. Talbot’s dinosaur influenced Jurassic Park — yes, that little novel (series) turned super-franchise

In the article naming the beast, she noted that a similar-sized dino had just been excavated from the Late Triassic of Germany. It would be christened Procompsognathus” in belief that the renowned Compsognathus of the Late Jurassic might be a descendant (it isn’t). 

Since the one and only skeleton of the pro-compy is missing key parts, Dr. Talbot’s graceful Podokesaurus was used to fill in the blanks and give a general portrait of the fox-sized predators of the Late Triassic. Talbot’s creature gained more fame when it became the inspiration for an entire family, the Podokesauridae.

Later in the twentieth century more species were added to the podoke clan, including Coelophysis from New Mexico. The New York museums scored a mass grave of Coelophysis in the 1940s and 1950s: dozens of skeletons from adults two yards long to babies as small as Podokesaurus and Procompsognathus. 

Proud members of the Family Podokesauridae. Coeolphysis grew to seven feet long. Check out the pubis in these guys!!

Proud members of the Family Podokesauridae. Coeolphysis grew to seven feet long. Check out the pubis in these guys!

IMPORTANT WARNING! The Jurassic Park franchise uses two names for tiny Triassic dinos: “pro-compy” and “compy”. There might be confusion among the dino-laity.

The true Compsognathus is Late Jurassic, with kin in the Early Cretaceous, and it doesn’t have podoke family values. As we’ll see in a bit, Crichton clearly meant his tiny carnivores to be classic Late Triassic/Early Jurassic carnivores — and that means podokesaurs.

The podokes had a near-monopoly in the meat-eating role in the Late Triassic/Early Jurassic. They were not only small and mid-sized carnivores, equivalent to kit foxes, coyotes and wolves, but they became the movers and shakers in the apex predator role. Big species attained lengths of 22 feet and weights approaching a ton — bigger than the biggest land meat-eaters today (grizzly and polar bears). All podoke species had that graceful build of Dr. Talbot’s Podokesaurus: supple neck, long torso, and outstandingly elongated tail.

And, for those of you who are pelvis-literate, you’ll notice another design feature: The pubis bone was outstanding in the forward slant and length.

Podoke attack! A ten-foot long podokesaur predator menaces the thin-necked herbivore Anchisaurus. Early Jurassic, Massachussetts, somewhere near Amherst College. 

Podoke attack! A 10-foot long podokesaur predator menaces the thin-necked herbivore Anchisaurus. Early Jurassic, Massachussetts, somewhere near Amherst College.

For Jurassic Park fans, Procompsognathus rings a bell. In Michael Crichton’s novel, the first dino we get to know is tweensey (but deadly) — a species identified as a pro-compy. These blood-thirsty characters are fond of jumping into perambulators and biting the faces of juvenile humans. They move in gangs. Crichton was dead-on here. Tracks from the Triassic/Jurassic do document podoke-packs, small carnivores cavorting in groups.

Podoke dance floor? Slab of shale with a dozen small predators cavorting. 

Podoke dance floor? Slab of shale with a dozen small predators cavorting.

In the Jurassic Park movie, the pro-compys are unstoppable nasties who confront the gifted character actor, Wayne Knight (Newman) of Seinfeld fame. (Knight’s best known for portraying portly and disreputable men, but we should remember that he was a dashing romantic lead in Third Rock from the Sun.)

In Jurassic Park, Knight’s character learns a lesson — the hard way. At first, he insults the pro-compys and tries to scare them away. Then they flash their threat-collars, a device cribbed from the Australian Frilled-Lizard. Then they hurl loogies of what seems to be venomous schmaltz. Nice scene. Scary.

However, dino-nerds: watch out. There are no bones in the lizard collar so preservation in a skeleton would be unlikely. Plus, threat collars are unknown among the many dinos now represented by fossils with skin. 

Plus, plus, no dino could spit. Spitting requires complex lip and face muscles of the sort a trombonist must have (didja know I was first-trombonist in the school band?). Reptiles can’t spit, birds can’t spit. Fossil dino faces show that the big, complicated lips just weren’t there.

Spitting cobras cheat. They don’t really spit. They have mouth muscles that squeeze the poison gland so the venom comes squirting out through the hollow fangs. Clever, but not a genuine spit.

Crichton used his dinos carefully. He fills Jurassic Park and Lost World novels with a lovely time-safari through the Mesozoic. He begins with the pro-compy, from the earliest slice of dino-time, about 210 million years ago. The long-necked brachiosaurs and stegos filled out the later Jurassic, some 145 million years ago. You could add a true Compsognathus here if you like. For the Early Cretaceous, 110 million years ago, we are given Deinonychus antirrhopus (labeled Velociraptor but actually Deinonychus). Triceratops, T. rex and the advanced ostrich-dinos fill out the last slice of Cretaceous, the Lancian Age, 66 million years ago. You can teach an entire paleo course with this fine selection of fossils. 

Remember, in the books and movies the label “pro-compy” and “compy” is synonymous with the podokesaurs. Crichton did not intend his Triassic dino to be a Compsognathus, the Late Jurassic animal quite different in body plan from the podokesaurs. Here’s where dilophosaurs come in.

Dilophosaurus, sensu stricto, is a Southwest Early Jurassic apex meat-eater — a big brother of Coelophysis and Podokesaurus. The first specimens were announced by the Berkeley museum in the 1950s. Size: near maximum for the podoke family, nearly 2,000 pounds soaking wet. Our Chinese colleagues excavated a super diloph of the same body mass. In each and every bony bump, the dilophosaur is built to the same basic plan used for Coelophysis, et al. Big difference, besides size, is the side-by-side bone crests on the head.

The Berkeley diloph. Black-n-white foto shows first restoration of head without crests. Color snapshot shows the crests added. Michelangelo’s David in for scale. Do note that this is a biggish predatory dino. 

The Berkeley diloph. Black and white photo shows first restoration of head without crests. Color snapshot shows the crests added. Michelangelo’s David in for scale. Do note that this is a biggish predatory dino.

In the books, Crichton does not describe any head ornaments for his pro-compys. The movie, on the other hand, gives the little fellows side-by-side crests, perfect miniatures of what true dilophs have. I go to screenings of the JP franchise every chance I get (“JP” is what we insiders call Jurassic Park). When I saw the 3D version on the HMNS Giant Screen, I was treated to massive vibrations that punctuated the scary parts. 

“Dilophosaurus … DILOPHOSAURUS!” shouted the five-year-old sitting behind me. He was kicking the back of my seat with unconstrained enthusiasm. Can’t blame the kid. He had his plastic diloph in his lap, evidently a cherished pet and quite accurate in most anatomical details (neck and ankle too long, too skinny). The extreme close-ups of the pro-compy head on the screen did look diloph-y. But … the size was as wrong as wrong can be and still stay within the podoke family.

Plastic dilophosaur, by Safari Ltd. About nine bucks at the museum gift shop, with your member discount.

Plastic dilophosaur, by Safari Ltd. About $9 at the Museum Store, with your member discount.

I was tempted to turn around and issue a correction: “Hey kid, that dino is a hundred times too small …” But I restrained myself. I estimated that the leader of the movie pro-compy pack was no more than 15 pounds, Boston Terrier-sized. With head crests, size matters. Small podokes don’t have much in the way of cranial protuberances. All the big crests are on big heads attached to big bodies.

Want to be a podkesaur? You must get a nose-notch. Coelophysis here has one.

Want to be a podokesaur? You must get a nose-notch. Coelophysis here has one.

And … there was something more, something missing from the schnoz in the movie compy. “No nose notch …” I said to myself. “Those guys in the movie have no nose notch … so … they aren’t members of the Family Podokesauridae!”

Notches below the hole for the nostril are a big deal in dinos and dino-kin. Land Croc-oids of the Triassic, second cousins of dinosaurs, usually are notched. But strong notches are rare amongst the carnivorous dinosaurians. T. rex is notch-less. So is Allosaurus and all the myriad raptors, from Micro-raptor to Meso-raptor to Mega-raptor. The bona fide Compsognthus is notch-less. The podoke family is the most consistently notched. Enjoy my own diagram of the Harvard skull from Coelophysis above. Please stare at the nose. There’s a notch here. Dilophosaurus has an even more emphatic notch.

No notch = no podokesaurid. Simple as that.

What about that long, slanty pubis, another hallmark of the podoke family? Study the movie dino as long as you like. You will find no unambiguous evidence of long, slanty pubic bones. None.

My conclusion: the movie artists did a great job with the pro-compys. They cobbled together a frightening chimaera from a bunch of critters, some lizards, some small meat-eating dinos, some big ones. These little dinos are the most imaginative, most mixed-up of all the JP creations. So enjoy them! But you cannot use the movie pro-compys to teach a lesson in dilophosaurs or any dilophosaur kin. The movie “compy/pro-compy” is NOT a crested podokesaur.

* Recently, some paleontologists have insisted using the name Family Coelophysidae to replace Podokesauridae, because we have so many skeletons of Coelophysis. These folks are well-meaning but, ahem, I am a Yalie and so I am sworn to defend the honor of Mt. Holyoke College and all its faculty and graduates. And its presidents. And its dinosaurs.

But here’s the Hitch: Who really discovered that dinosaurs had feathers?

I grew up in the 1950s and 1960s reading books about the dinosaur “orthodoxy.” According to this traditional view, the dinos died out at the end of the Cretaceous because their beloved swamps dried up and the air became too cool. But the new conditions were perfect for us quick-thinking Mammalia, so we took over, along with the other hot-blooded class, feathered birds. That was the Official Scientific View until the 1970s.

Whew! It’s hard to believe that four decades ago paleontology could be so very, very wrong.

Us versus Them. The smart hot-blooded mammal Didelphodon defies a rex. The furball is saying “Just wait till yer swamps freeze....”

Us versus Them. The smart hot-blooded mammal Didelphodon defies a
rex. The furball is saying “Just wait till yer swamps freeze…”

Today we know that Tyrannosaurus rex was not a big lizard. It was the 10,000-pound roadrunner from hell, clothed in fine feathers. Tyrannosaurs and other dino-clans ranged far north and far south and survived icy winters just fine. We mammals were kept small all through Mesozoic times because the dinos, on average, were faster on their feet, quicker in their jaws, and had better hearts and lungs. Dinos won the roles of top predator and top herbivore fair and square. The humiliating truth is that we mammals are the class that won by default, taking over only because some external event removed our dinosaurian overlords.

Face the facts friends: we are furry carpet-baggers.

Question: Who first discovered that dinosaurs were part of the hot-blooded bird family tree?

Was it Dr. Bob Bakker, your faithful curator? Aww, nice of you to ask, but the original hot-blooded-dino guy was long before my time.

How ‘bout Yale’s John Ostrom, who dug up the raptor Deinonychus in 1964 and linked raptor-dinos to the early bird Archaeopteryx?

No, he wasn’t the first. (Oddly, John fought the idea that Deinonychus had feathers.)

Was the first dino-bird chap Thomas Henry Huxley, the pugnacious defender of Darwin in the late 1860s and 1870s? Huxley, who coined the term “agnostic,” was a favorite of my advisor at Harvard, Stephen J. Gould. Huxley did point out that hips and shoulders of dinos were very bird-like, and so were feet. Therefore, Huxley argued, some sort of dinosaur-oid was the ultimate ancestor of the bird class.

But no again. Huxley was not the first to see bird-ness in the dinosaurs.

T. H. Huxley, as portrayed in Punch. Among his many jobs, Huxley served on the Board of Fisheries.

T. H. Huxley, as portrayed in Punch. Among his many jobs, Huxley
served on the Board of Fisheries.

Got your notebook ready? Here comes the answer, and it makes most museum-goers raise an eyebrow.

The true discoverer of feathered dinos was… the Reverend Edward Hitchcock, State Geologist of Massachusetts, Professor at Amherst College, philosopher and Congregationalist pastor. Hitchcock figured out that dinos were a subclass of birds as early as 1838 — four years before the term “dinosauria” was invented!

First Director, Massachusetts Geological Society, Edward Hitchcock. His wry sense of humor and boundless joy in science is evident.

First Director of the Massachusetts Geological Society, Edward Hitchcock. His
wry sense of humor and boundless joy in science is evident.

How many skeletons did Hitchcock dig up? None. Not a one. But surely his lab got many well-preserved parts of dinos, right? Nope. Only after he retired did a partial skeleton show up, blown to bits by gunpowder used to excavate a well. Hitchcock came to the fundamental truth about dinosaurs entirely from fossil trackways.

Across the pond at Oxford, Hitchcock’s colleague, the Reverend William Buckland did dig hundreds of Jurassic and Cretaceous bones and some pretty good skeletons. The Oxford fossils inspired Buckland’s student, Richard Owen, to come up with the name “dinosaur” in 1842.

Sad to say, neither Buckland nor Owen realized that their restorations of dino skeletons were, in today’s parlance, “bass ackwards” — they put a huge bone in the shoulder, giving the critters a clumsy muscle-bound look in the forequarters. They didn’t realize that their “shoulder” was really part of the hips. Hitch*, on the other hand, without a single well-preserved osseous specimen, scrutinized the footprints and got dinos correct, fore and aft.

What a guy.

“Bass Ackward” dinosaur in the 1820‘s--1860’s. The restoration done under Richard Owen, with gigantically distorted forelimbs and flat feet. Painting by Luis Ray from our “Big Golden Book of Dinosaurs”.

“Bass ackward” dinosaur in the 1820s-1860s. The restoration done
under Richard Owen, with gigantically distorted forelimbs and flat feet.
Painting by Luis Rey from our Big Golden Book of Dinosaurs.

Hitchcock and Buckland were members of the “Pious Paleontologists,” thoughtful scholars of the early 1800s who took the record of the rocks and the record of Scripture seriously. Hitch was persuaded that earth history, written in pages of shale and sandstone, would make everybody better, more intelligent citizens. He wrote a delightful book for his Congregationalist flock,The Religion of Geology probably the finest rumination of how rocks and fossils can be integrated with piety.

Hitch won the reputation as an inspiring lecturer at Amherst. Emily Dickinson, among many others, was enraptured by the stories of prehistoric New England and how the past had shaped the woodlands and gardens of the present day.

When Hitch took over the Geological Survey, the Connecticut Valley was already famous for red Jurassic rocks. Quarries were dug for paving stones, excellent for walkways, and massive sandstone blocks, ideal for constructing “brownstone” homes, college dorms and courthouses. (Alas, as coal-fired furnaces became common, acid rain ate into the Triassic-Jurassic sandstones and many brownstone monuments began crumbling in the mid-20th Century.)

Hitch and his crew found petrified remains in these beds: some fern-like fronds, stems of horsetail reeds, bits of fish and a magnificent bug, the larva of some ferocious water insect. The red rocks had petrified weather, too: some surfaces had the delicate pattern of raindrops. Others showed deep cracks produced by prolonged drying.

But the most abundant remains were tracks, thousands of them. Some of the littlest footprints were made by flat-footed, lizard-oid critters with long, supple toes in fore and hind paws. Much more common, and often of giant size, were tracks made by somebody very different — mystery animals who grew as big as elephants and shared a common body plan that kept Hitchcock’s powers of deduction busy for his entire career. It was a great quest — he was on the trail of the creatures who ruled the Jurassic world on land.

Giant mystery tracks exposed along a county road in Massachusetts, with the local farmers using the one-horsepower field vehicle to visit the site.

Giant mystery tracks exposed along a county road in Massachusetts, with
the local farmers using the one-horsepower field vehicle to visit the site.

Hitch pondered the prints made by the mystery toes. Almost two centuries before Microsoft and Apple, Hitchcock began a digital revolution, inventing new methods of deciphering the details of paws. He and his son scoured libraries for anatomical details of the class Amphibia, the class Reptilia, and the hot-blooded classes, the Mammalia and Aves. Then they ran digital experiments, chasing all manner of animals across muddy fields — including barefoot boys with cheeks of tan — so they could draw the arrangement of toes.

All this research gave the Reverend Hitchcock more insight into the animal sole than anyone had obtained before. Step by step, Hitch filled a dossier of clues that would lead him to a final identification.

Bakker - Hitch Bird Dino pt1 6

Barefoot boy track as drawn in Hitchcock’s great monograph. Little dots are raindrop impressions. Hitch found drop marks on rock slabs with the mystery monster tracks. There was no evidence, pro or con, that the boy or the monsters carried slingshots, a la Bart Simpson.

First Clue: Bipeds. Nearly all the mystery tracks, even the biggest, were made by animals walking on their hind legs alone. That was unlike the locomotion of most lizards and mammals. And unlike the way dinosaurs were restored — with huge shoulders.

Second Clue: Toe-walkers, not flat-foots. Usually there was not a trace of the heel so it must have been held high off the ground. That eliminated dinosaurs because the dinos were flat-footed — so said the brightest and best of Europe’s bone-sleuths.

Bakker - Hitch Bird Dino pt1 7

Third Clue: Long Achilles tendons. This clue was the biggie. Over 99 percent of the tracks showed nothing of the ankle and nothing of the front paw, because the mystery beasts were strict toe-walkers. But in a precious few fossils, the tracks captured the mystery animal as it squatted down on all fours to drink or sniff the earth. Marvelous. The entire backside of the ankle was pressed into the mud — the Achilles tendon wasn’t wide and flat like a lizard’s. It was gracefully elongated and slender. The front paws were tiny, five-fingered and carried short, sharp claws. Maybe there was a mark left by a stumpy tail — the track wasn’t clear on this point.

Hitchcock’s mind raced. What prehistoric monsters had ankles and front feet built that way? Not mammoths or rhinos. Those giant hairy beasts always had front feet wider than the hind, and the ankle was always short. Well then, what about frog-oids? The hopping amphibians did have long, powerful hind limbs, strong calf muscles and small hands. The thought of multi-ton froggies stomping over the Jurassic meadows was … well, weird. And exciting.

If not frogg-oids, mebbe … bandicoot-oids? Australia was famous for “low-class” mammals, the marsupials, which on average were smaller in the brain than antelope, deer and other “normal” mammalians. Kangaroos and bandicoots had enlarged rear legs with super-strong calf tendons — plus little hands. Therefore, Hitchcock had to take seriously the idea of Massachusetts being overrun by Jurassic bandicoots bouncing about, as big as bull African elephants.

The Usual Suspects: Giant prehistoric beasts who might have made the tracks.

The Usual Suspects: Giant prehistoric beasts who might have made the
tracks.

And then there was the original suggestion made about 1800 by farmers who dug tracks on their land: Maybe it was Noah’s raven. The Flood Story in Genesis says Noah released a raven from the ark to test the depth of the water. The raven didn’t come back, so Noah concluded that some bare land had appeared. The Noah reference was a joke, an i.d. offered with a chuckle. But, indeed, to the un-trained eye, the Jurassic mystery tracks did have an avian gestalt …

… and Hitchcock could feel that he was getting close to the final answer. He needed just one more new type of CSI analysis, a quantitative sole-searching that would finger the culprit and reveal, once and for all, the identity of the Jurassic rulers.

Hitchcock’s Digital Data Base -- one page of the great monograph of 1858. Paleo-podiatry would enable the Reverend to solve the mystery of the Jurassic tracks.

Hitchcock’s Digital Data Base: one page of the great monograph of
1858. Paleo-podiatry would enable the Reverend to solve the mystery of the Jurassic tracks.

Paleo-powered pictures for everyone on Sept. 24: Bakker’s back with a big book of dinosaurs

Our esteemed curator of paleontology, Dr. Robert T. Bakker, is back in town and on campus at HMNS Tuesday, Sept. 24 for a very special book signing and lecture.

Coinciding with the release of his brand new picture book, The Big Golden Book of Dinosaurs, Dr. Bakker will lead a lecture in the Giant Screen Theatre, to be followed by a book-signing session at the Museum Store.

From the Google

Among the topics to be addressed during the lecture with Dr. Bakker’s inimitable enthusiasm are: Was T. rex a slow-footed stumble-bum? (No!) Were tyrannosaurs devoid of any gentle, nurturing gestures? (No way!) Were gigantic meat-eating dinos ticklish? (You bet!) Could you out-run an angry charging triceratopsine? (Don’t even try.)

Kid-friendly dino activities will be available throughout the Grand Hall prior to the lecture, beginning at 5 p.m. For more information or to book your tickets in advance, click here!