Go Stargazing! December Edition

Jupiter dominates this month’s evening skies.  It outshines all stars in the sky, so it’s easy to find.  Face south at dusk and look for the brightest thing there.

Mercury has emerged into the evening sky, and is visible at the beginning of this month.  Look low in the southwest at dusk, right over the point of sunset.  By mid-month, Mercury is again lost in the Sun’s glare; it re-aligns with the sun (is at inferior conjunction) on Dec. 19.

Venus remains a dazzling morning star.  Face southeast at dawn, and you can’t miss it.

Saturn is in the southeast at dawn, above the much brighter Venus.

mars-06-crop
Creative Commons License photo credit: chipdatajeffb

Mars is now lost in the sun’s glare; it will remain invisible to us all winter as Earth passes around the far side of the sun from it.

Look for the enormous Summer Triangle in the night sky, consisting of the stars Deneb, Vega, and Altair, in the west.  These stars were up all night long back in June and July, hence the name. The Great Square of Pegasus, not quite as bright as the Summer Triangle, is high in the south at dusk.  The star in its upper left hand corner is also the head of Andromeda.  Rising after Andromeda is Perseus, the hero that saved her life.  Facing north, you’ll see five stars in a distinct ‘M’ like shape—this is Cassiopeia, the Queen.  Her stars are about as bright as those in the Big Dipper, and she is directly across the North Star from that Dipper.  Taurus, the Bull rises in the northeast.  Look for the Pleiades star cluster at the feet of Perseus.  Dazzling Orion, the Hunter rises shortly after dusk (by month’s end, it is already up at dusk).  As Orion enters the evening sky, we transition from the relatively dim evening skies of autumn to the brilliant stars of winter.

Moon Phases in December 2010:

New Moon                             December 5, 11:36 a.m.

1st Quarter                            December 13, 7:58 a.m.

Full Moon                              December 21, 2:14 a.m.

Last Quarter                         December 27, 10:19 p.m.

Eclipse burning bright
Creative Commons License photo credit: ericskiff

The full moon of early Tuesday, December 21, enters the Earth’s shadow, causing a total lunar eclipse.  This eclipse is visible in its entirety from all of North America, including Houston.  The moon first encounters the Earth’s shadow (umbra) at 12:32 a.m.  This marks the beginning of the partial eclipse.  The moon takes just over an hour, until 1:40 a.m., to enter the shadow.  That is when totality begins.  In this eclipse, the Moon does not quite cross the center of Earth’s shadow but instead passes through the northern part of it.  Even so, the moon takes 74 minutes to cross to the other side of the shadow, so totality lasts from 1:40 to 2:54 a.m.  By 4:02 a.m., the moon has re-emerged from the shadow, and the eclipse is over.  Remember, seeing a lunar eclipse requires no special equipment at all; anyone who sees the moon sees the eclipse.  The only thing that could stop us from seeing this would be a cloudy night on December 20-21, 2010.  The next total lunar eclipse we see here in Houston occurs just after midnight on April 15, 2014.

At 5:42 p.m. on Tuesday, December 21, the sun is overhead at the Tropic of Capricorn, the most southerly latitude where the sun can be overhead.  This is therefore the winter solstice for those of us in the Northern Hemisphere, and the summer solstice for people south of the equator.

At Houston’s latitude, the earliest sunset of the year occurs Thursday, December 2.  Of course, days continue to shorten until the solstice, which makes sunset earlier and sunrise later.  However, Earth is also accelerating as it approaches perihelion (closest approach to the sun) in early January.  This causes sunrise, local noon, and sunset to occur slightly later each day.  This close to the solstice, the second effect actually predominates, so sunset gets a little later during December even while the days are getting shorter.  As you head out to ring in the New Year, notice that sunset on New Year’s Eve is about 10 minutes later than it is now.

2009 Leonid Meteor (cropped, afterglow closeup)
Creative Commons License photo credit: Navicore

The Geminid meteor shower peaks every year in mid-December, this year on the 14.  This shower and the Perseids in August are the two most reliable showers of the year, producing about 1 or two meteors per minute.  The Geminids are not as popular, though, because of colder nights (yes, sometimes even in Houston) and a greater chance of cloudy skies.  Still, it’s worth a look if the skies are clear.  Unlike most meteor showers which are comet debris, the Geminids originate from an asteroid (3200 Phaethon.  The shallower angle between this debris path and Earth’s orbit means that Earth rotates us towards the debris field before midnight.  We can thus observe meteors from late evening all the way until dawn.  Meteors will seem to radiate from the constellation Gemini, hence the shower’s name.