About Kelsey

Kelsey started working at the Museum through Xplorations summer camp, and this fall she started working as a programs facilitator. She is a presenter for several outreach programs, assists with overnight programs, and assists with education collections during summer camp. Her favorite dinosaur is a Triceratops found at HMNS Sugar Land. The Triceratops is also named "Kelsey."

Layers of the Earth: A Classroom Activity

Photo by NASA

Photo by NASA

From the core to the crust, the Earth is a pretty big deal. It has a diameter of about 6,400 km, and it is made of various layers that help change the surface of the earth. These layers are defined by either what they are made of or how they move. When we look at the chemical composition of each layer, we are defining them as compositional layers. The compositional layers are the crust, the mantle and the core. When we look at the mechanical properties of the layers, we are defining them as the mechanical layers. The five mechanical layers are the lithosphere, the asthenosphere, the mesosphere, the inner core and the outer core. Although we only see the outermost layer of the earth, we have learned a lot about the layers underneath by looking at seismic waves and various rocks at the surface. 

The three compositional layers of the earth are defined by significant changes in chemical composition. The outermost layer is the crust. It is the thinnest layer making up only about 1 percent of the earth. The crust is mostly made of elements like silicon (Si), aluminum (Al), potassium (K), calcium (Ca), oxygen (O), sodium (Na) and minerals made of these elements. The crust can be subdivided into two types – oceanic crust and continental crust. Oceanic crust tends to be thinner (approx. 5-10km thick) than continental crust and younger too! Continental crust is on average 30 km thick, and contains the oldest rocks and minerals. Both types of crust cover the entire outer portion of the earth. Below the crust lies the mantle (approximately 2,890 km thick.) The mantle is made of silicon (Si) and oxygen (O) like the crust, but it also contains large amounts of iron (Fe) and magnesium (Mg). The final compositional layer of the earth is the core (approx.3,480 km thick). The core is made of iron (Fe) and nickel (Ni). It is under intense pressure and high temperatures, and it is the densest layer of the earth. Although these layers may share common elements, the contents differ enough to create the distinct layers.

The five mechanical layers of the earth are defined by how the layers move. The layers can be described as rigid, plastic or liquid in consistency. The outermost mechanical layer is the lithosphere. The lithosphere is rigid, and it includes the crust and the uppermost part of the mantle. The lithosphere is divided into the tectonic plates, areas of continental crust and/or oceanic crust that move and shift over time. The tectonic plates of the lithosphere move and shift on the plastic layer called the asthenosphere. The asthenosphere is under more pressure than the lithosphere and has a higher temperature. It is considered plastic because the rock has the ability to flow more than a rigid layer, but not as easily as a liquid layer.  The rock in the asthenosphere could melt if exposed to the surface, but it is under extreme pressure causing it to flow like a plastic. The mesosphere is the layer below the asthenosphere. The mesosphere is hotter than the asthenosphere, but it is rigid because it is experiencing more pressure than the layers above. The last mechanical layers of the earth are found in the core. The core is split into the outer core and the inner core because the two layers differ in rigidity. The outer core is liquid iron (Fe) and nickel (Ni). The flow of the outer core creates and sustains the earth’s magnetic field. Unlike the outer core, the inner core is solid. The inner core is made from mostly iron (Fe), but it can also contain nickel (Ni) and traces of precious elements like gold (Au). It is extremely hot, and under extreme pressure from the layers of the earth and atmosphere around it. All of these layers work together to make our dynamic earth!

Create a foldable Earth with the activity below to teach students about the various layers of the earth. To learn how the asthenosphere moves tectonic plates or learn about the natural disasters caused by that movement, check out our new Earth Science on Wheels topic Dynamic Earth!

final product edit

This project models two different ways to understand the layers of the earth. It addresses the compositional layers of the earth, and the mechanical layers of the earth.


all the supplies edit


  1. Pass out template to each student.
  2. Instruct students to cut out the Earth. Once they have cut the outside, tell them to cut along the dashed line that says “cut here.”
  3. Next, fold along the “Fold line.” Then, set the Earth aside.
  4. Now, tell students to cut out the quarter circle labeled A. This will represent the mechanical layers of the earth.
  5. Invite students to color each of the areas in the quarter circle a different color starting from the inside:
    1. Yellow – inner corre
    2. Orange – outer core
    3. Red – mesosphere
    4. Pink – asthenosphere
    5. Purple – lithospherecut and colored edit
  6. Have students set aside the mechanical layers (A.) for now
  7. Instruct students to cut out the second quarter circle (B.) from the template sheet. These will represent the compositional layers of the earth. Invite students to color each of the sections a different color:
    1. Yellow – core
    2. Red – mantle
    3. Brown – crust
  8. Have students set aside the compositional layers (B.) for now
  9. Instruct students to glue the earth, to the background paper. Remind them to not glue down the flap.
  10. Tell students to place the mechanical layers (A.) on the background paper underneath the flap and glue it to the paper.
  11. They should then take the quarter circle that represents the compositional layers (B.), and place it on the backside of the flap of the Earth. Then, carefully glue it to the back of the flap.
  12. Once completed, show students how to flip up the flap and see the mechanical layers on the background page and the compositional layers on the back of the flap. Students can add notes to the layers to help them learn what the layers do!

The Science of Summer

Why does ice cream look different when it melts in your car and gets refrozen?
If you have ever made homemade ice cream, you may have noticed that it takes a lot of work. My family’s ice cream maker looked a lot like this one which was electric but needed a little more monitoring than the ones we have today.


The key to some good ice cream is keeping it at the perfect temperature and keeping it moving. Commercial creameries have special machines that continually stirs the ice cream while it is being frozen. These machines cool the ice cream much more quickly than my home machine ever could, which is why their ice cream is much creamier. It prevents larger ice crystals from freezing in the ice cream.

When ice cream melts in the Houston heat on your way home from the grocery store, you may notice that it’s not quite the same consistency any more. If you put the ice cream back into the freezer, it will refreeze, but over a longer period of time than the original ice cream. In addition when you re-freeze the ice cream, you aren’t churning the mixture. This allows larger crystals to form which affects its appearance and its creamy consistency. It is not recommended to refreeze ice cream that has been left out for a longer period of time. Ice cream is made out of dairy, so it can grow bacteria or spoil if left out for too long!

How does sunscreen actually work?
First, we have to talk about what happens to cause your skin to burn. When you are out in the sun, your skin is exposed to sunlight which is made from ultraviolet (UV) radiation. Ultraviolet radiation can be subdivided into three categories based on wavelength. UV-A radiation has the longest wavelength. It is not absorbed by our atmosphere’s ozone layer and it is the type of UV that is responsible for long term skin damage. UV-B radiation has a shorter wavelength than UV-A. Some of the UV-B radiation is absorbed by the ozone layer and the remaining UV-B radiation that reaches the earth’s surface is responsible for sunburns. The last type of UV radiation is UV-C radiation. It has the shortest wavelength and it is completely absorbed by our atmosphere. On the Earth’s surface, we are not affected by UV-C radiation, but it could be an issue for astronauts if they didn’t have those protective suits. Sunscreen protects our skin from the two most common forms of UV radiation on the earth’s surface – UV-A and UV-B.

Essentially, sunscreen forms a thin, invisible protective layer on the surface of our skin. It uses organic and inorganic active ingredients to form that protective layer. The organic ingredients such as octyl methoxycinnamate and oxybenzone absorb UV rays. When the rays are absorbed, the energy is harmlessly dissipated in the form of heat. Some of the organic materials in sunscreen will slowly break down over time, which is why we need to reapply sunscreen regularly. The inorganic active ingredients like zinc oxide or titanium dioxide reflect the UV radiation essentially preventing the UV radiation from hitting the skin. Early versions of sunscreen were opaque and white, which reflected the UV radiation well. However, it wasn’t the most appealing look for the beach. With newer technology, they’ve made these inorganic materials much smaller and nearly invisible.


How can I cool down a warm beverage quickly?
It’s the middle of summer, and when you walk outside it feels like you have walked through a curtain of heat and humidity. Nothing sounds better in a Houston summer than a nice, cold drink. But we’ve all forgotten to move something from the pantry to the fridge, and ended up with a warm drink instead. Even when you move that drink to the fridge, it can take over 45 minutes to reach the cool temperature you’d prefer. Here are a few ways to cool down your beverage quickly, and the science on how it works.

Option 1: The Wet Paper Towel Method.
Wrap your bottle or can in a wet paper towel and place in the fridge. The drink will cool down much faster with the wet paper towel because of how heat is transferred. Normally, heat will transfer from a higher temperature object to a lower temperature object. In the case of the drink in the fridge, the heat will transfer from the soda can (higher temperature) to the air in the fridge (lower temperature). Heat can be more easily transferred through a solid like the soda can because the atoms are closer together on average. It is much more difficult with a gas like the air in the fridge because the atoms are more spread out on average. When we put a wet paper towel onto the outside of the can, we are using a liquid to facilitate the transfer of heat more easily than with air. Water from the towel will evaporate from the towel and the remaining water will be cooler. This process is called evaporative cooling. The wet towel also conducts the heat from the can cooling the soda to the temperature you prefer.

Option 2: The Salt & Ice Water Method.
Fill a bowl with ice and water, then pour salt over the icy mixture. Place the can or bottle in the bowl, and stir. It should be colder in about 5 minutes. The reason that this method works so well is trifold. First, you are lowering the melting point of the ice when you add salt so the mixture will be colder than 32° F. Basically as the ice is melting, it is using up a little bit of energy to break bonds causing the remaining water to be colder. Having a colder liquid helps the heat transfer between the liquid and the soda can. Which brings me to the second reason that it cools quickly – it’s a liquid! As we mentioned in option 1, heat can be transferred more easily through water than through air, so the water is facilitating the heat transfer. Lastly, stirring the bottle or can around in the mixture can reduce the amount of time needed to cool down the soda. If you did not stir the mixture, then the can would slowly transfer heat to the liquid surrounding it making the liquid immediately surrounding it warmer. The transfer of heat would continue slowly until both the can and the liquid reach equilibrium. By stirring the mixture, you are exposing the can to more of the cold water which speeds up the transfer of heat. In both situations, the can and liquid are reaching equilibrium, but over different amounts of time.

With either cooling option, you will get a nice cold beverage quickly and now you know the science behind it!

Girls take home STEM prizes at annual GEMS event!

Two weeks ago, we celebrated our annual Girls Exploring Math and Science (GEMS) public event! We had an amazing turnout from local STEM organizations presenting fun activities and demonstrations for kids of all ages. They also helped us find our top three student projects! These projects were presented at booths by students in middle school and high school. We had many amazing projects, and it was unfortunate we could only choose three winners! We’re proud to present the top three student projects.

3rd place winners

In third place, we have a group of high school students from the Jersey Village robotics team, Jersey Voltage. Their project entitled “Up, Up & Robots Away!” focused on the robot the group built in just six weeks. The robot was programmed to pick up and stack boxes more than six feet high. They hope to use their winnings to fund parts for their robot and their entry into robotics competitions.

2nd place winners

Our second place group presented a project called “Fun with Fizix,” which discussed several areas of physics. This group of girls from Awty International School demonstrated Bernoulli’s principle, as well as surface area and conservation of energy. They’d like to use their winnings to go on a field trip to see physics in action!

First Place Winners

Finally, we’d like to introduce our first place winners! The group of girls from Girl Scout Troop 21276 presented a project about genetically modified organisms called “GMOs: The New Revolution of Food.” They experimented growing different varieties of food to determine the effectiveness of GMO produce and food. The group created a model that described how genetically modified rice could last longer during the wet season than non-genetically modified rice. They plan to use the grand prize winning for the T.H. Rogers science program and perhaps a Night at the Museum!

Generic GEMS

Thank you for coming out to GEMS 2016! If you’d like to participate next year, please email gems@hmns.org for more information. Join us at next year’s GEMS event on February 18, 2017! 


This Saturday, The Educator Event gives teachers a look at Houston museums

The Educator Event @HMNS is an exclusive event for all educators including student teachers, administrators, education undergraduate and graduate students, and home school educators. Join us Saturday, Jan. 23 from 8 a.m. to 1 p.m. for a free day at the museum featuring educational workshops and the opportunity to earn three hours of CPE credit. Workshops will be presented by the Houston Museum of Natural Science as well as other local museums and educational institutions. Workshops will cover several subject areas from science to history to art! San Jacinto Battleground State Historic Site presents a workshop on how the Battle of San Jacinto was a turning point in Texas history. Explore the Hoover Dam with NRG Energy and create your own pocket book with The Printing Museum. Check out all 14 workshops in our event program to plan out your day!


Discover field trips, outreach programs and teacher workshops that cater to your needs! There will be representatives from multiple organizations offering curriculum, field trip ideas, and activities for your subject. Get your students to interact with Texas history by visiting the Houston Heritage Society table and discovering their historical field trips.  Discover the geometry of a baseball field by talking to Minute Maid Park Tours about their TEKS-aligned programming. For a truly unique experience with biology and history, talk to the National Museum of Funeral History about their History of Embalming exhibit. Come see these organizations and more to discover how to create an experience your students will never forget!


Registration is still open. Sign up today at www.hmns.org/educatorevent.