It’s Baktunalia! Astronomy VP Carolyn Sumners on why Dec. 21 is cause for celebration, not wild imagination

December 21, 2012: It’s not the End of the World — it’s the Baktunalia! It’s time for a celebration, not an apocalypse.

Here are the facts: The Maya long count calendar will go from 12.19.19.17.19 to 13.0.0.0.0 as we go from December 20 to December 21, 2012. So December 20 is New Baktun Eve and December 21 is New Baktun Day.

(FYI for those who like numbers: The five digits of the Mayan long count are base 20, except for the second number from the right, which is base 18. Our numbers are base 10. We have ones, tens, hundreds, and thousands. The Maya long count has kins, winals, tuns, katuns, and baktuns. For the Maya, a day is called a “kin.” Twenty kins make a winal. Eighteen winals, or 360 kins, equal a tun, making the tun about a year long. Twenty tuns make a katun and 20 katuns equal a baktun. Thirteen baktuns is just over 5,125 years.)

The Roman Saturnalia festival also occurred at this time — a celebration featuring food, gifts, and celebrations around the Winter Solstice. Early Christians could celebrate Christ’s birth on December 25, hiding their event within the Saturnalia festivities. Hence, I’m calling this year’s rare event a Baktunalia!

See 2012: Mayan Prophecies at the Burke Baker Planetarium

Did the Maya calendar-makers over 2,000 years ago plan for their long-count calendar to reach the 13th Baktun on December 21? This is possible, but it seems unlikely. However, December is the Winter Solstice, a day the Maya recognized as the shortest day and longest night of the year — the day when the sun rises furthest in the southeast, sets furthest in the southwest, and makes its lowest and shortest path across the southern sky in the Northern Hemisphere. The Maya astronomers observed the sun on the winter solstice to document its southernmost rising and the promise that the sun would now start moving northward. There would be another spring and a new growing season.

Unlike the Internet doomsday prophets, science does not support an apocalypse in 2012. Solar activity maximum is happening in 2013. Thus far, all natural disasters in 2012 have been within the normal range of activity on a geologically active planet with dynamic weather patterns.

But there is one interesting astronomical alignment. On December 21, the sun will reach its lowest point in the sky for the Northern Hemisphere while it is in front of a dark rift in the Milky Way and directly between Earth and the Milky Way Galaxy’s center. This alignment has been in place for several years, but is often cited by the doomsday prophets. The black hole near the galactic center has the same effect on us today as it does on any day. This alignment makes no difference. Nor is it significant on December 21. After all, the sun is its strongest on this date south of the equator.

Lost in all the apocalyptic talk are the very significant achievements of the Maya regarding both time-keeping and astronomy. In the Burke Baker Planetarium, we have a show called Mayan Prophecies that visits four classic Maya cities (Uxmal, Chichen Itza, Tikal, and Palenque), as they would have looked over a thousand years ago. At Uxmal, we see a Maya astronomer watching the sun’s rays entering the Temple of the Magician just two 20-day months before the sun would stand overhead and the rains would come. After this event, the astronomer could prepare farmers to plant their corn and the king to plan festivals.

At Chichen Itza, the feathered serpent god called Kukulcan would climb down his pyramid, El Castillo, on the first day of spring. Astronomers would then know when to have festivities with human sacrifices, trading human blood for the coming rains — all to appease Kukulcan and the rain god, Chaac. We actually show this sacrifice (tastefully) in the full dome and very up-close in the Mayan Prophecies planetarium show.

At Tikal (located in the lowlands of Guatemala), the astronomer would climb his pyramid, now called Temple 4, to watch the rising sun on December 21. When the sun rose over Temple 3, it marked the winter solstice. After this date, the astronomer knew that the sun would rise more to the north each day and that the rainy season would come again.

At Palenque, there are inscriptions inside major temples featuring trees for the seasons. The great King Pacal supposedly rose and journeyed to the heavens on December 21. Inscriptions at Palenque also explain the beginning of the long count cycle on a date we know now as August 13, 3114 BCE. Three temples at Palenque symbolize the three hearthstones of creation, with a central fire lit at the beginning of the current long count cycle. There are also three stars in our constellation Orion that represent these hearthstones.

For all their predictive power, the Maya astronomer could not foresee his own apocalypse, which happened over a thousand years ago. A combination of factors adding to decades of drought brought famine to the Classic Mayan cities. This great civilization, that had measured time and predicted the rains, collapsed and its people returned to the rainforest and mountains. The story of the Maya people is perhaps a greater predictor of the challenges we face in 2012 and beyond.

Fascinated? Discover how the Maya aligned their pyramids and temples to watch their sky gods and used interlocking calendars to record the past and predict the future in our Mayan Prophecies lecture. Dr. Carolyn Sumners will share how archaeological, historical and astronomical records were pieced together to learn more about the Maya. This lecture includes a viewing of film 2012: Mayan Prophecies. For lecture tickets, click here.

One thought on “It’s Baktunalia! Astronomy VP Carolyn Sumners on why Dec. 21 is cause for celebration, not wild imagination

  1. You mention in your blog that “Thirteen baktuns is just over 5,125 years”, but 20x20x13=5200. The only way to get to 5125 is to assume a year/tun consists of 360 days/kins (as alluded to in your blog), which suggests that the Maya winals (20-day ‘months’) were allowed to shift from year to year. Is that correct? If the Maya could identify the winter solstice, why would they have stuck with a calendar with only 360 kins in a tun (rather than 365 1/4 kins, or even just 365)?

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>