Ride on a Shooting Star: Space Fuel


September 30, 2011
312 Views

After the decimation suffered during World War II, mankind took a look at all the new technologies he had created to fight the war and turned his gaze towards the stars. From the late 1940’s this onward and upward reach has helped to fuel the engines of our ingenuity, but what has fueled those stellar ambassadors that now dot our solar system and beyond.

654 - Galaxies - Seamless Texture
Creative Commons License photo credit: Patrick Hoesly

To move from the surface of the earth to this new ocean a rocket must be moving about 7 miles per second. That takes a lot of energy. Many different propellants have been used. The very first rocket fuels were a mix of kerosene and liquid oxygen. Alcohol, hydrogen peroxide, and liquid hydrogen have also been used, in addition to solid fuels. They can provide thrust without the need for all the refrigeration and containment equipment that some of the liquid fuels, such as liquid hydrogen and oxygen, require.

Once the probe is beyond the reach of the atmosphere there is no way to change what’s on board.

The probe cannot drop by the local Radio Shack and pick up a fresh pair of AA batteries. While the probe is being built on Earth, the engineers must make sure that they provide a source of power that will give the probe the right amount of power.

Too little power and the scientific instrumentation won’t work; too much power could over heat the probe. On board chemical batteries can be used, but they take space that could be used for scientific instruments. Solar panels can be used, but only up to a certain distance from the sun. Beyond the orbit of Jupiter, probes need an internal power supply that will last for years.

They use the heat from radioactive decay of fissionable isotope.

Sputnik 1 in Orbit Sep 10-4-57
Creative Commons License photo credit: FlyingSinger

Early probes like Sputnik and Explorer 1 used chemical batteries to power their systems. In March of 1958 Vanguard 1, the 4th artificial satellite and the 1st powered by solar power, was launched. Probes with solar panels have more space on board for scientific instruments than probes that use only chemical batteries. Probes sent into the inner solar system (sun to Mars) are almost all powered using solar arrays.

Mariner 2, the first USA probe to Venus, suffered the loss of one of its solar arrays, but because it was closer to the sun, it was able to operate using only one solar array. No American manned space craft have made use of solar arrays yet (the new Multi-Purpose Crew Vehicle may), the Russian Soyuz spacecraft have used them since 1967.

The International Space Station (ISS) is the largest man-made structure outside our atmosphere.

Larger than a football field (but smaller than a football pitch), this outpost orbits the earth every hour and a half. It is also powered completely by solar power. Past the atmosphere, solar power becomes more practical and more consistent (there is no night in space). Because of the orbital path of the ISS, it is eclipsed by the earth for 30 minutes out of every hour and a half. The station makes use of rechargeable batteries to make sure it is never without power.

From a Distance
Creative Commons License photo credit: Undertow851

As the probes go farther and farther away from the sun, the light that can reach them is less and less.

Until August of 2011, no probe to Jupiter had ever been powered just by solar panels. Juno, the latest probe to Jupiter, has the largest solar arrays given to a deep space probe and the first probe to Jupiter to use solar arrays.

Jupiter receives only 4% of the sunlight we enjoy on Earth. Advances in solar technology have now made it practical to use solar panels out 5 Astronomical Units (AUs) from the sun. All other deep space probes have used a radioisotope thermoelectric generator (RTG).

A RTG works by converting the heat from the decay of a radioactive fuel into electricity. American probes have been using Plutonium 238 (an isotope of Plutonium) since the late 1960’s. It has a half life of about 88 years. RTGs have powered all our interplanetary probes (the Voyagers and Pioneers and soon to be New Horizons). However, NASA has begun to run out of fuel for the RTGs and the creation of more is full of political and safety considerations.

There he goes, after an all day long work.
Creative Commons License photo credit: giumaiolini

The technology that we’ve made to go out to the ‘verse with will also help us here on the cool, green hills of earth. RGTs have been used, mainly by Russia, to provide power for off the grid light houses. Advances in solar panels for space are used down here on Terre Firma. With the reliably of solar power in space, there are even attempts to construct orbital solar collectors to beam down electricity. There will be from heaven to Earth more than is dreamt of.

Daniel
Authored By Daniel Burch

An inveterate punster, amateur chef, and fencer, Daniel B has a double degree in History and Museum Science from Baylor. He currently serves as the Assistant Program Coordinator for the Wiess Energy Hall and Adult Education at HMNS.

Leave a Reply

Your email address will not be published. Required fields are marked *

Become An HMNS Member

With a membership level for everyone; Don't just read about it, see it.

View All Membership Levels

Editor's Picks 5 Of The Most Magical Objects at HMNS We Don’t Mean To Bug You, But We Have To Tell You About Our Awesome Entomology Collection! My Favorite Part About Camp! Unwrapping HMNS: An Interview With A Gladiator May Pixel Party Recap: What Happens When You Let A Bunch Of Expert Photographers Loose At HMNS? May Educator How-To: Make a Roman Mosaic
Follow And Subscribe

Equally Interesting Posts




HMNS at Hermann Park

5555 Hermann Park Dr.
Houston,Texas 77030
(713) 639-4629


Get Directions Offering varies by location
HMNS at Sugar Land

13016 University Blvd.
Sugar Land, Texas 77479
(281) 313-2277


Get Directions Offering varies by location
George Observatory

21901 FM 762 Rd.
Needville, Texas 77461
(281) 242-3055

Hours
Tuesday - Saturday By Reservation
Saturdays 3:00PM - 10:00PM
Saturdays (DST) 3:00PM - 11:00PM
DST = Daylight Savings Time.
Please call for holiday hours. Entry to Brazos Bend State Park ends at 9:30 p.m. daily
Get Directions Offering varies by location

Stay in the know. Join our mailing list.